深度学习9:简单理解生成对抗网络原理

news2024/9/29 5:27:15

目录

生成算法

生成对抗网络(GAN)

“生成”部分

“对抗性”部分

GAN如何运作?

培训GAN的技巧?

GAN代码示例

如何改善GAN?

结论


生成算法

您可以将生成算法分组到三个桶中的一个:

  1. 鉴于标签,他们预测相关的功能(朴素贝叶斯)
  2. 给定隐藏的表示,他们预测相关的特征(变分自动编码器,生成对抗网络)
  3. 鉴于一些功能,他们预测其余的(修复,插补)

我们将探索生成对抗网络的一些基础知识!GAN具有令人难以置信的潜力,因为他们可以学习模仿任何数据分布。也就是说,GAN可以学习在任何领域创造类似于我们自己的世界:图像,音乐,语音。

示例GAN架构

生成对抗网络(GAN)

“生成”部分

  • 叫做发电机
  • 给定某个标签,尝试预测功能
  • EX:鉴于电子邮件被标记为垃圾邮件,预测(生成)电子邮件的文本。
  • 生成模型学习各个类的分布。

“对抗性”部分

  • 称为判别者
  • 鉴于这些功能,尝试预测标签
  • EX:根据电子邮件的文本,预测(区分)垃圾邮件或非垃圾邮件。
  • 判别模型学习了类之间的界限。

GAN如何运作?

一个称为Generator的神经网络生成新的数据实例,而另一个神经网络Discriminator则评估它们的真实性。

您可以将GAN视为伪造者(发电机)和警察(Discriminator)之间的猫捉老鼠游戏。伪造者正在学习制造假钱,警察正在学习如何检测假钱。他们都在学习和提高。伪造者不断学习创造更好的假货,并且警察在检测它们时不断变得更好。最终的结果是,伪造者(发电机)现在接受了培训,可以创造出超现实的金钱!

让我们用MNIST手写数字数据集探索一个具体的例子:

MNIST手写数字数据集

我们将让Generator创建新的图像,如MNIST数据集中的图像,它取自现实世界。当从真实的MNIST数据集中显示实例时,Discriminator的目标是将它们识别为真实的。

同时,Generator正在创建传递给Discriminator的新图像。它是这样做的,希望它们也将被认为是真实的,即使它们是假的。Generator的目标是生成可通过的手写数字,以便在不被捕获的情况下进行说谎。Discriminator的目标是将来自Generator的图像分类为假的。

MNIST手写数字+ GAN架构

GAN步骤:

  1. 生成器接收随机数并返回图像。
  2. 将生成的图像与从实际数据集中获取的图像流一起馈送到鉴别器中。
  3. 鉴别器接收真实和假图像并返回概率,0到1之间的数字,1表示真实性的预测,0表示假

两个反馈循环:

  1. 鉴别器处于反馈循环中,具有图像的基本事实(它们是真实的还是假的),我们知道。
  2. 发生器与Discriminator处于反馈循环中(Discriminator将其标记为真实或伪造,无论事实如何)。

培训GAN的技巧?

在开始训练发生器之前预先识别鉴别器将建立更清晰的梯度。

训练Discriminator时,保持Generator值不变。训练发生器时,保持Discriminator值不变。这使网络能够更好地了解它必须学习的梯度。

GAN被制定为两个网络之间的游戏,重要:保持它们的平衡。如果发电机或鉴别器太好,GAN可能很难学习。

GAN需要很长时间才能训练。在单个GPU上,GAN可能需要数小时,在单个CPU上,GAN可能需要数天。

GAN代码示例

class GAN():
    def __init__(self):
        self.img_rows = 28 
        self.img_cols = 28
        self.channels = 1
        self.img_shape = (self.img_rows, self.img_cols, self.channels)

        optimizer = Adam(0.0002, 0.5)

        # Build and compile the discriminator
        self.discriminator = self.build_discriminator()
        self.discriminator.compile(loss='binary_crossentropy', 
            optimizer=optimizer,
            metrics=['accuracy'])

        # Build and compile the generator
        self.generator = self.build_generator()
        self.generator.compile(loss='binary_crossentropy', optimizer=optimizer)

        # The generator takes noise as input and generated imgs
        z = Input(shape=(100,))
        img = self.generator(z)

        # For the combined model we will only train the generator
        self.discriminator.trainable = False

        # The valid takes generated images as input and determines validity
        valid = self.discriminator(img)

        # The combined model  (stacked generator and discriminator) takes
        # noise as input => generates images => determines validity 
        self.combined = Model(z, valid)
        self.combined.compile(loss='binary_crossentropy', optimizer=optimizer)

    def build_generator(self):

        noise_shape = (100,)
        
        model = Sequential()

        model.add(Dense(256, input_shape=noise_shape))
        model.add(LeakyReLU(alpha=0.2))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Dense(512))
        model.add(LeakyReLU(alpha=0.2))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Dense(1024))
        model.add(LeakyReLU(alpha=0.2))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Dense(np.prod(self.img_shape), activation='tanh'))
        model.add(Reshape(self.img_shape))

        model.summary()

        noise = Input(shape=noise_shape)
        img = model(noise)

        return Model(noise, img)

    def build_discriminator(self):

        img_shape = (self.img_rows, self.img_cols, self.channels)
        
        model = Sequential()

        model.add(Flatten(input_shape=img_shape))
        model.add(Dense(512))
        model.add(LeakyReLU(alpha=0.2))
        model.add(Dense(256))
        model.add(LeakyReLU(alpha=0.2))
        model.add(Dense(1, activation='sigmoid'))
        model.summary()

        img = Input(shape=img_shape)
        validity = model(img)

        return Model(img, validity)

    def train(self, epochs, batch_size=128, save_interval=50):

        # Load the dataset
        (X_train, _), (_, _) = mnist.load_data()

        # Rescale -1 to 1
        X_train = (X_train.astype(np.float32) - 127.5) / 127.5
        X_train = np.expand_dims(X_train, axis=3)

        half_batch = int(batch_size / 2)

        for epoch in range(epochs):

            # ---------------------
            #  Train Discriminator
            # ---------------------

            # Select a random half batch of images
            idx = np.random.randint(0, X_train.shape[0], half_batch)
            imgs = X_train[idx]

            noise = np.random.normal(0, 1, (half_batch, 100))

            # Generate a half batch of new images
            gen_imgs = self.generator.predict(noise)

            # Train the discriminator
            d_loss_real = self.discriminator.train_on_batch(imgs, np.ones((half_batch, 1)))
            d_loss_fake = self.discriminator.train_on_batch(gen_imgs, np.zeros((half_batch, 1)))
            d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)


            # ---------------------
            #  Train Generator
            # ---------------------

            noise = np.random.normal(0, 1, (batch_size, 100))

            # The generator wants the discriminator to label the generated samples
            # as valid (ones)
            valid_y = np.array([1] * batch_size)

            # Train the generator
            g_loss = self.combined.train_on_batch(noise, valid_y)

            # Plot the progress
            print ("%d [D loss: %f, acc.: %.2f%%] [G loss: %f]" % (epoch, d_loss[0], 100*d_loss[1], g_loss))

            # If at save interval => save generated image samples
            if epoch % save_interval == 0:
                self.save_imgs(epoch)

    def save_imgs(self, epoch):
        r, c = 5, 5
        noise = np.random.normal(0, 1, (r * c, 100))
        gen_imgs = self.generator.predict(noise)

        # Rescale images 0 - 1
        gen_imgs = 0.5 * gen_imgs + 0.5

        fig, axs = plt.subplots(r, c)
        cnt = 0
        for i in range(r):
            for j in range(c):
                axs[i,j].imshow(gen_imgs[cnt, :,:,0], cmap='gray')
                axs[i,j].axis('off')
                cnt += 1
        fig.savefig("gan/images/mnist_%d.png" % epoch)
        plt.close()


if __name__ == '__main__':
    gan = GAN()
    gan.train(epochs=30000, batch_size=32, save_interval=200)

如何改善GAN?

GAN刚刚在2014年发明 – 它们非常新!GAN是一个很有前途的生成模型家族,因为与其他方法不同,它们可以生成非常干净和清晰的图像,并学习包含有关基础数据的有价值信息的权重。但是,如上所述,可能难以使Discriminator和Generator网络保持平衡。有很多正在进行的工作使GAN培训更加稳定。

除了生成漂亮的图片之外,还开发了一种利用GAN进行半监督学习的方法,该方法涉及鉴别器产生指示输入标签的附加输出。这种方法可以使用极少数标记示例在数据集上实现最前沿结果。例如,在MNIST上,通过完全连接的神经网络,每个类只有10个标记示例,实现了99.1%的准确度 – 这一结果非常接近使用所有60,000个标记示例的完全监督方法的最佳已知结果。这是非常有希望的,因为在实践中获得标记的示例可能非常昂贵。

结论

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/933568.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

6. 使用python将多个Excel文件合并到同一个excel-附代码解析

【目录】 文章目录 6. 使用python将多个Excel文件合并到同一个excel-附代码解析1. 目标任务2. 结果展示3. 代码示例4. 代码解析4.1 导入库4.2 调用库的类、函数、变量语法4.3 os.listdir-返回目录中的文件名列表4.4 startswith-用于判断一个字符串是否以指定的前缀开头4.5 ends…

如何评估开源项目的活跃度和可持续性?

🌷🍁 博主猫头虎 带您 Go to New World.✨🍁 🦄 博客首页——猫头虎的博客🎐 🐳《面试题大全专栏》 文章图文并茂🦕生动形象🦖简单易学!欢迎大家来踩踩~🌺 &a…

深度学习1.卷积神经网络-CNN

目录 卷积神经网络 – CNN CNN 解决了什么问题? 需要处理的数据量太大 保留图像特征 人类的视觉原理 卷积神经网络-CNN 的基本原理 卷积——提取特征 池化层(下采样)——数据降维,避免过拟合 全连接层——输出结果 CNN …

postgresql-字符函数

postgresql-字符函数 字符串连接字符与编码字符串长度大小写转换子串查找与替换截断与填充字符串格式化MD5 值字符串拆分字符串反转 字符串连接 concat(str, …)函数用于连接字符串,并且忽略其中的 NULL 参数;concat_ws(sep, str, …) 函数使用指定分隔…

小研究 - Java虚拟机内存管理(三)

Java 语言的面向对象,平台无关,安全,开发效率高等特点,使其在许多领域中得到了越来越广泛的应用。但是由于Java程序由于自身的局限性,使其无法应用于实时领域。由于垃圾收集器运行时将中断Java程序的运行,其…

【手写promise——基本功能、链式调用、promise.all、promise.race】

文章目录 前言一、前置知识二、实现基本功能二、实现链式调用三、实现Promise.all四、实现Promise.race总结 前言 关于动机,无论是在工作还是面试中,都会遇到Promise的相关使用和原理,手写Promise也有助于学习设计模式以及代码设计。 本文主…

9个python自动化脚本,PPT批量生成缩略图、添加图片、重命名

引言 最近一番在整理资料,之前买的PPT资源很大很多,但归类并不好,于是一番准备把这些PPT资源重新整理一下。统计了下,这些PPT资源大概有2000多个,一共30多G,一个一个手动整理这个投入产出比也太低了。 作为…

CotEditor for mac 4.0.1 中文版(开源文本编辑器)

coteditorformac是一款简单实用的基于Cocoa的macOS纯文本编辑器,coteditormac版本可以用来编辑网页、结构化文本、程序源代码等文本文件,使用起来非常方便。 CotEditor for Mac具有正则表达式搜索和替换、语法高亮、编码等实用功能,而CotEdi…

QtWidgets和QtQuick融合(QML与C++融合)

先放一个界面效果吧! 说明:该演示程序为一个App管理程序,可以将多个App进行吸入管理。 (动画中的RedRect为一个带有QSplashScreen的独立应用程序) 左侧边栏用的是QQuickView进行.qml文件的加载(即QtQuick…

JS算法之树(一)

前言 之前我们已经介绍过一种非顺序数据结构,是散列表。 JavaScript散列表及其扩展http://t.csdn.cn/RliQf 还有另外一种非顺序数据结构---树。 树数据结构 树是一种分层数据的抽象模型。公司组织架构图就是常见的树的例子。 相关术语 一个树结构&#xff0…

x86的内存寻址方式

文章目录 一、实模式寻址二、保护模式寻址三、段页式内存管理四、Linux的内存寻址五、进程与内存1、内核空间和用户空间2、内存映射3、进程内存分配与回收 一、实模式寻址 在16位的8086时代,CPU为了能寻址超过16位地址能表示的最大空间(因为 8086 的地址…

小研究 - J2EE 应用服务器的软件老化测试研究

软件老化现象是影响软件可靠性的重要因素,长期运行的软件系统存在软件老化现象,这将影响整个业务系统的正常运行,给企事业单位带来无可估量的经济损失。软件老化出现的主要原因是操作系统资源消耗殆尽,导致应用系统的性能下降甚至…

virtuoso61x中集成calibre

以virtuoso618为例,在搭建完电路、完成前仿工作之后绘制版图,版图绘制完成之后需要进行drc和lvs【仅对于学校内部通常的模拟后端流程而言】,一般采用mentor的calibre来完成drc和lvs。 服务器上安装有virtuoso和calibre,但是打开la…

servlet,Filter,责任的设计模式,静态代理

servlet servlet是前端和数据库交互的一个桥梁 静态网页资源的技术:在前端整个运行的过程中 我们的网页代码不发生改变的这种情况就称为静态的网页资源技术动态网页资源的技术:在前端运行的过程中 我们的前端页面代码会发生改变的这种情况就称为 动态的网…

电商版面设计之优惠券设计

1、画一个矩形---最快的方法,提前写好 2、ALT复制矩形图层 3、提前把优惠券的文案准备好 4、改一下字体---72 5、字体改成12号字体 6、上面对齐选择第二个去做,最上方 7、后面那个就是门槛 8、用Alt复制4个 9、改字就行 10、看见不错的优惠劵设计可以参…

word如何调整页码

文章目录 如何调整页码 如何调整页码 用 word 写报告的时候,经常遇到要求说是要从正文开始才显示页码,那如何实现呢 把鼠标放在我们正文的那一页的顶部,点击 布局 ,再点击分隔符,再点击连续 再点击编译页脚 选择你想要的页脚格式…

十四、pikachu之XSS

文章目录 1、XSS概述2、实战2.1 反射型XSS(get)2.2 反射型XSS(POST型)2.3 存储型XSS2.4 DOM型XSS2.5 DOM型XSS-X2.6 XSS之盲打2.7 XSS之过滤2.8 XSS之htmlspecialchars2.9 XSS之href输出2.10 XSS之JS输出 1、XSS概述 Cross-Site S…

探讨uniapp的组件使用的问题

1 view Flex是Flexible Box的缩写,意为“弹性布局”,用来为盒状模型提供最大的灵活性。 当设置display: flex后,继续给view等容器组件设置flex-direction:row或column,就可以在该容器内按行或列排布子组件。uni-app推荐使用flex布…

[Linux]进程

文章目录 1. 进程控制1.1 进程概述1.1.1 并行和并发1.1.2 PCB1.1.4 进程状态1.1.5 进程命令 1.2 进程创建1.2.1 函数1.2.2 fork() 剖析 1.3 父子进程1.3.1 进程执行位置1.3.2 循环创建子进程1.3.3 终端显示问题1.3.4 进程数数 1.4 execl和execlp函数1.4.1 execl()1.4.2 execlp(…

Android 13.0 首次开机默认授予app运行时权限(去掉运行时授权弹窗)

1.概述 在13.0的系统产品开发中,在android6.0以后对于权限的申请,都需要动态申请,所以会在系统首次启动后,在app的首次运行时,会弹出授权窗口,会让用户手动授予app运行时权限,在由于系统产品开发需要要求默认授予app运行时权限,不需要用户默认授予运行时弹窗,所以需要…