TCP--半连接队列和全连接队列

news2024/11/17 6:39:39

原文地址:https://plantegg.github.io/2020/04/07/%E5%B0%B1%E6%98%AF%E8%A6%81%E4%BD%A0%E6%87%82TCP–%E5%8D%8A%E8%BF%9E%E6%8E%A5%E9%98%9F%E5%88%97%E5%92%8C%E5%85%A8%E8%BF%9E%E6%8E%A5%E9%98%9F%E5%88%97–%E9%98%BF%E9%87%8C%E6%8A%80%E6%9C%AF%E5%85%AC%E4%BC%97%E5%8F%B7%E7%89%88%E6%9C%AC/

最近碰到一个client端连接服务器总是抛异常的问题,然后定位分析并查阅各种资料文章,对TCP连接队列有个深入的理解
查资料过程中发现没有文章把这两个队列以及怎么观察他们的指标说清楚,希望通过这篇文章能把他们说清楚

问题描述

场景:JAVA的client和server,使用socket通信。server使用NIO。

  1. 间歇性的出现client向server建立连接三次握手已经完成,但server的selector没有响应到这连接。
  2. 出问题的时间点,会同时有很多连接出现这个问题。
  3. selector没有销毁重建,一直用的都是一个。
  4. 程序刚启动的时候必会出现一些,之后会间歇性出现。

分析问题

正常TCP建连接三次握手过程

在这里插入图片描述

  • 第一步:client 发送 syn 到server 发起握手;
  • 第二步:server 收到 syn后回复syn+ack给client;
  • 第三步:client 收到syn+ack后,回复server一个ack表示收到了server的syn+ack(此时client的56911端口的连接已经是established)

从问题的描述来看,有点像TCP建连接的时候全连接队列(accept队列,后面具体讲)满了,尤其是症状2、4. 为了证明是这个原因,马上通过 netstat -s | egrep “listen” 去看队列的溢出统计数据:

667399 times the listen queue of a socket overflowed

反复看了几次之后发现这个overflowed 一直在增加,那么可以明确的是server上全连接队列一定溢出了

接着查看溢出后,OS怎么处理:

# cat /proc/sys/net/ipv4/tcp_abort_on_overflow
0

tcp_abort_on_overflow 为0表示如果三次握手第三步的时候全连接队列满了那么server扔掉client 发过来的ack(在server端认为连接还没建立起来)

为了证明客户端应用代码的异常跟全连接队列满有关系,我先把tcp_abort_on_overflow修改成 1,1表示第三步的时候如果全连接队列满了,server发送一个reset包给client,表示废掉这个握手过程和这个连接(本来在server端这个连接就还没建立起来)。

接着测试,这时在客户端异常中可以看到很多connection reset by peer的错误,到此证明客户端错误是这个原因导致的(逻辑严谨、快速证明问题的关键点所在)。

于是开发同学翻看java 源代码发现socket 默认的backlog(这个值控制全连接队列的大小,后面再详述)是50,于是改大重新跑,经过12个小时以上的压测,这个错误一次都没出现了,同时观察到 overflowed 也不再增加了。

到此问题解决,**简单来说TCP三次握手后有个accept队列,进到这个队列才能从Listen变成accept,默认backlog 值是50,很容易就满了。**满了之后握手第三步的时候server就忽略了client发过来的ack包(隔一段时间server重发握手第二步的syn+ack包给client),如果这个连接一直排不上队就异常了。

但是不能只是满足问题的解决,而是要去复盘解决过程,中间涉及到了哪些知识点是我所缺失或者理解不到位的;这个问题除了上面的异常信息表现出来之外,还有没有更明确地指征来查看和确认这个问题。

深入理解TCP握手过程中建连接的流程和队列

image.png

(图片来源:http://www.cnxct.com/something-about-phpfpm-s-backlog/)

如上图所示,这里有两个队列:syns queue(半连接队列);accept queue(全连接队列)

三次握手中,在第一步server收到client的syn后,把这个连接信息放到半连接队列中,同时回复syn+ack给client(第二步);

题外话,比如syn floods 攻击就是针对半连接队列的,攻击方不停地建连接,但是建连接的时候只做第一步,第二步中攻击方收到server的syn+ack后故意扔掉什么也不做,导致server上这个队列满其它正常请求无法进来

第三步的时候server收到client的ack,如果这时全连接队列没满,那么从半连接队列拿出这个连接的信息放入到全连接队列中,否则按tcp_abort_on_overflow指示的执行。

这时如果全连接队列满了并且tcp_abort_on_overflow是0的话,server过一段时间再次发送syn+ack给client(也就是重新走握手的第二步),如果client超时等待比较短,client就很容易异常了。

在我们的os中retry 第二步的默认次数是2(centos默认是5次):

net.ipv4.tcp_synack_retries = 2

如果TCP连接队列溢出,有哪些指标可以看呢?

上述解决过程有点绕,听起来蒙逼,那么下次再出现类似问题有什么更快更明确的手段来确认这个问题呢?

(通过具体的、感性的东西来强化我们对知识点的理解和吸收)

netstat -s

[root@server ~]#  netstat -s | egrep "listen|LISTEN" 
667399 times the listen queue of a socket overflowed
667399 SYNs to LISTEN sockets ignored

比如上面看到的 667399 times ,表示全连接队列溢出的次数,隔几秒钟执行下,如果这个数字一直在增加的话肯定全连接队列偶尔满了。

ss 命令

[root@server ~]# ss -lnt
Recv-Q Send-Q Local Address:Port  Peer Address:Port 
0        50               *:3306             *:* 

上面看到的第二列Send-Q 值是50,表示第三列的listen端口上的全连接队列最大为50,第一列Recv-Q为全连接队列当前使用了多少

全连接队列的大小取决于:min(backlog, somaxconn) . backlog是在socket创建的时候传入的,somaxconn是一个os级别的系统参数

这个时候可以跟我们的代码建立联系了,比如Java创建ServerSocket的时候会让你传入backlog的值:

ServerSocket()
    Creates an unbound server socket.
ServerSocket(int port)
    Creates a server socket, bound to the specified port.
ServerSocket(int port, int backlog)
    Creates a server socket and binds it to the specified local port number, with the specified backlog.
ServerSocket(int port, int backlog, InetAddress bindAddr)
    Create a server with the specified port, listen backlog, and local IP address to bind to.

(来自JDK帮助文档:https://docs.oracle.com/javase/7/docs/api/java/net/ServerSocket.html)

半连接队列的大小取决于:max(64, /proc/sys/net/ipv4/tcp_max_syn_backlog)。 不同版本的os会有些差异

我们写代码的时候从来没有想过这个backlog或者说大多时候就没给他值(那么默认就是50),直接忽视了他,首先这是一个知识点的忙点;其次也许哪天你在哪篇文章中看到了这个参数,当时有点印象,但是过一阵子就忘了,这是知识之间没有建立连接,不是体系化的。但是如果你跟我一样首先经历了这个问题的痛苦,然后在压力和痛苦的驱动自己去找为什么,同时能够把为什么从代码层推理理解到OS层,那么这个知识点你才算是比较好地掌握了,也会成为你的知识体系在TCP或者性能方面成长自我生长的一个有力抓手

netstat 命令

netstat跟ss命令一样也能看到Send-Q、Recv-Q这些状态信息,不过如果这个连接不是Listen状态的话,Recv-Q就是指收到的数据还在缓存中,还没被进程读取,这个值就是还没被进程读取的 bytes;而 Send 则是发送队列中没有被远程主机确认的 bytes 数

$netstat -tn  
Active Internet connections (w/o servers)
Proto Recv-Q Send-Q Local Address   Foreign Address State  
tcp0  0 server:8182  client-1:15260 SYN_RECV   
tcp0 28 server:22    client-1:51708  ESTABLISHED
tcp0  0 server:2376  client-1:60269 ESTABLISHED

netstat -tn 看到的 Recv-Q 跟全连接半连接没有关系,这里特意拿出来说一下是因为容易跟 ss -lnt 的 Recv-Q 搞混淆,顺便建立知识体系,巩固相关知识点

Recv-Q 和 Send-Q 的说明

Recv-Q
Established: The count of bytes not copied by the user program connected to this socket.
Listening: Since Kernel 2.6.18 this column contains the current syn backlog.
Send-Q
Established: The count of bytes not acknowledged by the remote host.
Listening: Since Kernel 2.6.18 this column contains the maximum size of the syn backlog.

通过 netstat 发现问题的案例

自身太慢,比如如下netstat -t 看到的Recv-Q有大量数据堆积,那么一般是CPU处理不过来导致的:

image.png

下面的case是接收方太慢,从应用机器的netstat统计来看,也是压力端回复太慢(本机listen 9108端口)

image.png

send-q表示回复从9108发走了,没收到对方的ack,基本可以推断PTS到9108之间有瓶颈

上面是通过一些具体的工具、指标来认识全连接队列(工程效率的手段)

实践验证一下上面的理解

把java中backlog改成10(越小越容易溢出),继续跑压力,这个时候client又开始报异常了,然后在server上通过 ss 命令观察到:

Fri May  5 13:50:23 CST 2017
Recv-Q Send-QLocal Address:Port  Peer Address:Port
11         10         *:3306               *:*

按照前面的理解,这个时候我们能看到3306这个端口上的服务全连接队列最大是10,但是现在有11个在队列中和等待进队列的,肯定有一个连接进不去队列要overflow掉,同时也确实能看到overflow的值在不断地增大。

Tomcat和Nginx中的Accept队列参数

Tomcat默认短连接,backlog(Tomcat里面的术语是Accept count)Ali-tomcat默认是200, Apache Tomcat默认100.

#ss -lnt
Recv-Q Send-Q   Local Address:Port Peer Address:Port
0       100                 *:8080            *:*

Nginx默认是511

$sudo ss -lnt
State  Recv-Q Send-Q Local Address:PortPeer Address:Port
LISTEN    0     511              *:8085           *:*
LISTEN    0     511              *:8085           *:*

因为Nginx是多进程模式,所以看到了多个8085,也就是多个进程都监听同一个端口以尽量避免上下文切换来提升性能

总结

全连接队列、半连接队列溢出这种问题很容易被忽视,但是又很关键,特别是对于一些短连接应用(比如Nginx、PHP,当然他们也是支持长连接的)更容易爆发。 一旦溢出,从cpu、线程状态看起来都比较正常,但是压力上不去,在client看来rt也比较高(rt=网络+排队+真正服务时间),但是从server日志记录的真正服务时间来看rt又很短。

jdk、netty等一些框架默认backlog比较小,可能有些情况下导致性能上不去,比如这个 《netty新建连接并发数很小的case》
都是类似原因

希望通过本文能够帮大家理解TCP连接过程中的半连接队列和全连接队列的概念、原理和作用,更关键的是有哪些指标可以明确看到这些问题(工程效率帮助强化对理论的理解)。

另外每个具体问题都是最好学习的机会,光看书理解肯定是不够深刻的,请珍惜每个具体问题,碰到后能够把来龙去脉弄清楚,每个问题都是你对具体知识点通关的好机会。

最后提出相关问题给大家思考

  • 全连接队列满了会影响半连接队列吗?
  • netstat -s看到的overflowed和ignored的数值有什么联系吗?
  • 如果client走完了TCP握手的第三步,在client看来连接已经建立好了,但是server上的对应连接实际没有准备好,这个时候如果client发数据给server,server会怎么处理呢?(有同学说会reset,你觉得呢?)

提出这些问题就是以这个知识点为抓手,让你的知识体系开始自我生长

参考文章:

http://veithen.github.io/2014/01/01/how-tcp-backlog-works-in-linux.html

http://www.cnblogs.com/zengkefu/p/5606696.html

http://www.cnxct.com/something-about-phpfpm-s-backlog/

http://jaseywang.me/2014/07/20/tcp-queue-%E7%9A%84%E4%B8%80%E4%BA%9B%E9%97%AE%E9%A2%98/

http://jin-yang.github.io/blog/network-synack-queue.html#

http://blog.chinaunix.net/uid-20662820-id-4154399.html

https://www.atatech.org/articles/12919

https://www.cnblogs.com/xiaolincoding/p/12995358.html

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/929027.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

分布式事务篇-2.3 Seata事务模式

文章目录 前言一、事务模式 是什么?二、Seata中的事务模式支持:2.1 AT 模式(自动补偿型事务):2.1.1 AT 模型:2.1.2 AT 写隔离:2.1.3 AT 读隔离:2.1.3 AT 优缺点: 2.2 TCC…

图的应用(考研)

一、最小生成树 性质: (1)不唯一(2)权值之和是唯一的(3)删去一条边会变成非连通图,增加一条边会产生回路(4)最小生成树的边数为顶点数减一 1、Prim算法 m…

第P2周:彩色图片识别

🍨 本文为🔗365天深度学习训练营 中的学习记录博客🍖 原作者:K同学啊 我的环境: 语言环境:Python3.10.7编译器:VScode深度学习环境:TensorFlow 2.13.0 一、前期工作: …

生产制造型企业BOM搭建分析

导 读 ( 文/ 2358 ) 在上几篇文章中,我们讲到了基础的物料管理方法,在生产制造中,物料作为原材料,通过加工,结构组装成产品。那么加工、组装的依据将来源于设计人员出具的零件清单,也就是我们常说的BOM。 …

本地编译angular提示内存溢出

本地遇到编译angular时,报如下错误: FATAL ERROR: Ineffective mark-compacts near heap limit Allocation failed - JavaScript heap out of memory 两种解决办法,具体如下: 设置环境变量,见图: 直接在…

cortex-A7核LED灯实验--STM32MP157

实验目的:实现LED1 / LED2 / LED3三盏灯工作 一,分析电路图 1,思路 分析电路图可知: 网络编号 引脚编号 LED1 PE10 LED2 > PF10 LED3 > PE8 2,工作原理: 写1:LED灯亮&#xf…

小猫爪:嵌入式小知识17-XCP on CAN简介

小猫爪:嵌入式小知识17-XCP on CAN简介 0 目录1 前言2 XCP on CAN3 实战演练3.1 CONNECT3.2 GET_COMM_MODE_INFO和GET_STATUS3.3 GET_SEED和UNLOCK3.4 获取Slave信息3.5 SET_MTA和BUILD_CHECKSUM3.6 设置DAQ3.7 DAQ传输3.8 SHORT_UPLOAD3.9 标定3.10 FLASH Program …

算法笔记(三):数组

静态数组 动态数组 把动态数组封装为一个类 1、属性 public class DynamicArray implements Iterable<Integer> {private int size 0; // 逻辑大小(有效的元素个数)private int capacity 8; // 容量private int[] array {}; // 动态数组 }2、方法 1&#xff…

癌症预测新利器:弹性逻辑回归让健康更可控!

一、引言 癌症是全球范围内健康领域的重大挑战&#xff0c;早期预测和诊断对于提高治疗效果和生存率至关重要。在过去的几十年里&#xff0c;随着医学和数据科学的快速发展&#xff0c;基于机器学习和统计方法的癌症风险预测成为研究的热点。其中&#xff0c;弹性逻辑回归作为一…

数据结构之哈希

哈希 1. 哈希概念2. 哈希冲突3. 哈希冲突解决3.1 哈希表的闭散列3.2 哈希表的开散列 2. 哈希的应用2.1 位图2.2 布隆过滤器 哈希&#xff08;Hash&#xff09;是一种将任意长度的二进制明文映射为较短的二进制串的算法。它是一种重要的存储方式&#xff0c;也是一种常见的检索方…

Unity——拖尾特效

拖尾是一种很酷的特效。拖尾的原理来自人类的视觉残留&#xff1a;观察快速移动的明亮物体&#xff0c;会看到物体移动的轨迹。摄像机通过调整快门时间&#xff0c;也可以拍出具有拖尾效果的照片&#xff0c;如在城市的夜景中&#xff0c;汽车的尾灯拖曳出红色的线条。 在较老…

平安健康,找到了医疗服务的价值密码

健康是人类的永恒需求&#xff0c;围绕医疗和健康服务衍生的产业&#xff0c;却苦于无法和用户建立足够紧密、长期的联系。由此&#xff0c;也不得不面临价值从何而来的问题。 作为医疗服务领域的代表性企业&#xff0c;平安健康医疗科技有限公司&#xff08;股票简称“平安好…

Oracle解锁表、包、用户、杀会话、停job

Oracle解锁表、包、用户、杀会话、停job 一、创建包tzq_server_pkg二、授权给需要使用的用户log三、解锁表&#xff1a;执行存过unlock_table(schema_name, table_name)四、解锁包&#xff1a;执行存过unlock_package(schema_name, pkg_name)五、解锁用户&#xff1a;执行存过u…

14-数据结构-二叉树的创建以及前中后遍历,以及结点和叶子节点的计算(C语言)

概述&#xff1a; 二叉树&#xff0c;这里采用孩子链表存储法&#xff0c;即一个数据域和两个左右孩子指针域。随后递归进行遍历即可。在创建二叉树的时候&#xff0c;先创建各个二叉树结点&#xff08;这里的结点采用动态分配&#xff0c;因此结点为指针变量&#xff09;&…

c语言中编译过程与预处理

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、c语言的编译与链接1、编译与链接概述2、编译与链接详解 二、c语言预处理1.c语言中内置的预定义符号2、#define定义标识符3、#define定义宏4、#define 替换规…

项目进度管理软件:选择最适合您的工具

项目进度管理作为项目管理的重要组成部分&#xff0c;可以帮助项目团队更好地控制项目进度&#xff0c;确保项目按时完成并达到预期目标。本文将介绍项目进度管理软件的功能以及市场上常见的几种项目进度管理软件。 “项目进度管理软件有哪些?功能出色的有Zoho Projects、Trel…

ResNet 模型原理

ResNet与Vgg的主要区别&#xff1a; 1.ResNet相较于Vgg具有更加深的网络结构 2.ResNet相较于Vgg引入了残差连接的结构 3.ResNet引入了BatchNorm层&#xff0c;使得ResNet能够训练更加深的网络结构 4.ResNet使用stride2的卷积层代替了Vgg中池化层进行下采样 5.ResNet相较于…

【在Windows下搭建Tomcat HTTP服务】

文章目录 前言1.本地Tomcat网页搭建1.1 Tomcat安装1.2 配置环境变量1.3 环境配置1.4 Tomcat运行测试1.5 Cpolar安装和注册 2.本地网页发布2.1.Cpolar云端设置2.2 Cpolar本地设置 3.公网访问测试4.结语 前言 Tomcat作为一个轻量级的服务器&#xff0c;不仅名字很有趣&#xff0…

报错:1 字节的 UTF-8 序列的字节 1 无效。

这里我的问题出现在BookMapper.xml中 java.lang.IllegalStateException: Failed to load ApplicationContextat org.springframework.test.context.cache.DefaultCacheAwareContextLoaderDelegate.loadContext(DefaultCacheAwareContextLoaderDelegate.java:125)at org.spring…

情人节特别篇:用c++弹奏音乐“海阔天空”与“孤勇者”

W...Y的主页 &#x1f495; 代码库分享 &#x1f60a; 目录 孤勇者 海阔天空 今天是2023年8月22日七夕情人节&#xff0c;但是对我来说就是再普通不过的日子。我相信有很多人期待这一天的到来&#xff0c;和自己的对象出去享受快乐时光。但是我只有一个人独孤的度过短暂的时…