【C语言】动态内存管理,详细!!!

news2024/11/24 13:28:14

文章目录

  • 前言
  • 一、为什么存在动态内存分配
  • 二、动态内存开辟函数的介绍
    • 1.malloc
    • 2.calloc
    • 3.realloc
    • 4.free
  • 三、动态内存开辟中的常见错误
    • 1.误对NULL进行解引用操作
    • 2.对于动态开辟的空间进行了越界访问
    • 3.对于非动态开辟的内存进行了free操作
    • 4.只free掉动态开辟内存的一部分
    • 5.多次free已经释放的空间内存
  • 四、总结


添加链接描述

前言

大家好呀,时隔好几天小小樊又来为大家分享C语言学习啦,今天为大家分享一下自己对于动态内存管理的理解!!!

一、为什么存在动态内存分配

对于栈上开辟的空间:

  1. 空间开辟大小是固定的。
  2. 数组在申明的时候,必须指定数组的长度,它所需要的内存在编译时分配。但是对于空间的需求,不仅仅是上述的情况。有时候我们需要的空间大小在程序运行的时候才能知道,那数组的编译时开辟空间的方式就不能满足了

这时就需要在堆区矩形动态内存开辟了

二、动态内存开辟函数的介绍

1.malloc

大家先看一下库中对于他的说明:
在这里插入图片描述

函数功能:开辟内存块
参数size_t:需要申请的字节数
返回值:申请失败返回空指针,申请成功返回指向申请该空间首地址的指针头文件:stdlib.h
注意:返回指针的类型是void*,这时候需要你把该指针强制类型转化为你想要的类型,这样方便访问,以及解引用,malloc申请来的空间是连续的,但是多次malloc来的是不连续的
malloc的使用

int main()
{
	int*p=(int*) malloc(40);//申请了40个字节,强制转化为int*类型指针
	if (p == NULL)//如果返回空指针的话,申请失败
	{
		perror("malloc:");//打印错误信息
		return 1;//非正常退出
	}
	for (int i = 0; i < 10; i++)
	{
		*(p + i) = i;//对每一个四个字节大小的元素赋值,这里*(p+i)的本质就是p[i];
		printf("%d", *(p + i));//打印每个元素
	}
	return 0;//程序正常退出


}

2.calloc

大家先看一下库中对于他的说明:
在这里插入图片描述
功能:申请一个数组在内存中,并且初始化为0;
参数:size_t num申请数组元素的个数,size_t size每个元素的字节大小
返回值:申请失败返回空指针,申请成功返回指向申请该空间首地址的指针头文件:stdlib.h
calloc函数的使用:

int main()
{
	int i = 0;
	int*p=(int*) calloc(10,sizeof(int));//申请10个元素,每个元素字节大小4
	if (p == NULL)//如果返回空指针的话,申请失败
	{
		perror("calloc:");//打印错误信息
		return 1;//非正常退出
	}
	for (int i = 0; i < 10; i++)
	{
		
		printf("%d ", *(p + i));//打印初始化的值
	}
	free(p);
	p = NULL;
    return 0;


}

在这里插入图片描述
malloc和calloc的区别:
与函数 malloc 的区别只在于 calloc 会在返回地址之前把申请的空间的每个字节初始化为全0

3.realloc

大家先看一下库中对于他的说明:
在这里插入图片描述
功能:内存块的扩容
参数:第一个参数接收要扩容内存块的首地址,扩容后总字节大小(包括原来的字节大小)
头文件:stdlib.h
初始扩容的空间为空,则realloc和malloc的用法一模一样
返回值:扩容后空间的首地址
在这里插入图片描述
在这里插入图片描述
realloc函数的使用:

int main()
{
	int* p = (int*)malloc(40);//申请了40个字节,强制转化为int*类型指针
	if (p == NULL)//如果返回空指针的话,申请失败
	{
		perror("malloc:");//打印错误信息
		return 1;//非正常退出
	}
	for (int i = 0; i < 10; i++)//循环打印扩容前的元素
	{
		*(p + i) = i;
		printf("%d ", *(p + i));
	}
	int* ptr = (int*)realloc(p, 80);//原空间够用ptr==p,不够用的话ptr存放新地址
	if (ptr != NULL)//扩容成功
	{
		p = ptr;//原空间够用ptr==p,不够用的话ptr存放新地址,重新将新地址给p
	}
	for (int i = 10; i < 20; i++)//扩容后新空间的
	{
		*(p + i) = i;
		printf("%d ", *(p + i));
	}

    free(p);
	p = NULL;
	
	return 0;
}

在这里插入图片描述

4.free

大家先看一下库中对于他的说明:
在这里插入图片描述
功能:释放内存块
参数:指针接收要释放内存块的首地址
头文件:stdlib.h
返回值:无

注意:
当p所指向的申请的空间释放时,p指针指向随机位置,p变成野指针,所以我们要在释放后将其置为空!!!

如果我们不释放动态内存申请的内存的时候,程序结束,动态申请内存由操作系统自动回收,如果不用free函数释放申请好的空间,就会在程序运行结束前一直存在于堆中,造成内存泄漏

三、动态内存开辟中的常见错误

1.误对NULL进行解引用操作

比如:

int main()
{
	int* p = (int*)malloc(1000);
	int i = 0;
	if (p ==NULL)
	{
		return 1;
	}
	for (i = 0; i < 250; i++)
	{
		*(p + i) = i;
	}
	free(p);
	p = NULL;
	return 0;
}

当开辟内存失败时会返回空,这时容易造成此错误。
解决方法:开辟内存后进行判断,如上面代码中的 if 判断

2.对于动态开辟的空间进行了越界访问

int main()
{
	int* p = (int*)malloc(100);
	int i = 0;
	if (p ==NULL)
	{
		return 1;
	}
	for (i = 0; i <=25; i++)//越界访问
	{
		*(p + i) = i;
	}
	free(p);
	p = NULL;
	return 0;
}

解决方法:人为进行检查是否越界

3.对于非动态开辟的内存进行了free操作

int main()
{
	int a = 10;
	int* p = &a;
	free(p);
	p = NULL;
	return 0;
}

4.只free掉动态开辟内存的一部分

int main()
{
	int* p = (int*)malloc(100);
	if (p == NULL)
	{
		return 1;}
	int i = 0;
	for (i = 0; i < 10; i++)
	{
		*p = i;
		p++;
    }
	free(p);
	p = NULL;
	return 0;
}

解决方案:
别改变保存动态开辟空间首地址的指针变量,使用时可以采用中间变量的方法!!!
例如:

int main()
{
	int* p = (int*)malloc(100);
	if (p == NULL)
	{
		return 1;


	}
	int i = 0;
	for (i = 0; i < 10; i++)
	{
		*(p+i)= i;
		printf("%d ", *(p + i));
    }
	free(p);
	p = NULL;

	return 0;
}

5.多次free已经释放的空间内存

int main()
{
	int* p = malloc(40);
	if (p == NULL)
	{
		return 1;
	}
	free(p);
	free(p);
	p = NULL;
	return 0;
}

四、总结

本次内容到这里就分享完啦,如果大家觉得对自己有帮助的话还请大家点个赞呀,有分享不对的地方还恳请大家指正,谢谢大家的阅读!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/923195.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

vue2 vue中的常用指令

一、为什么要学习Vue 1.前端必备技能 2.岗位多&#xff0c;绝大互联网公司都在使用Vue 3.提高开发效率 4.高薪必备技能&#xff08;Vue2Vue3&#xff09; 二、什么是Vue 概念&#xff1a;Vue (读音 /vjuː/&#xff0c;类似于 view) 是一套 **构建用户界面 ** 的 渐进式 …

Dapper

介绍 dapper是一款轻量级的ORM Dapper 被称为 ORM 之王。 以下是 Dapper 的主要功能&#xff1a; 速度快&#xff0c;性能快。 更少的代码行。 对象映射器。 静态对象绑定。 动态对象绑定。 轻松处理 SQL 查询。 易于处理存储过程。 直接对 IDBConnection 类进行操作&#xf…

Go 语言进阶与依赖管理 | 青训营

Powered by:NEFU AB-IN 文章目录 Go 语言进阶与依赖管理 | 青训营 语言进阶依赖管理测试 Go 语言进阶与依赖管理 | 青训营 GO语言工程实践课后作业&#xff1a;实现思路、代码以及路径记录 语言进阶 Go可以充分发挥多核优势&#xff0c;高效运行 Goroutine是Go语言中的协程…

遗传算法解决TSP问题

一、求解问题概述 1.1 TSP问题 TSP问题是指旅行商问题&#xff08;Traveling Salesman Problem&#xff09;。在TSP问题中&#xff0c;假设有一名旅行商要在给定的一组城市之间进行旅行&#xff0c;每个城市只能被访问一次&#xff0c;并且旅行商必须最终返回出发城市。问题的…

Python爬虫猿人学逆向系列——第六题

题目&#xff1a;采集全部5页的彩票数据&#xff0c;计算全部中奖的总金额&#xff08;包含一、二、三等奖&#xff09; 地址&#xff1a;https://match.yuanrenxue.cn/match/6 本题比较简单&#xff0c;只是容易踩坑。话不多说请看分析。 两个参数&#xff0c;一个m一个f&…

三次握手四次挥手之全连接半连接队列

什么是全连接半连接 在 TCP 三次握手的时候&#xff0c;Linux 内核会维护两个队列&#xff0c;分别是&#xff1a; 半连接队列&#xff0c;也称 Listen 队列&#xff1b;全连接队列&#xff0c;也称 accept 队列&#xff1b; 工作原理 每一个socket执行listen时&#xff0c…

day-30 代码随想录算法训练营 回溯part06

332.重新安排行程 思路&#xff1a;使用unordered_map记录起点机场对应到达机场&#xff0c;内部使用map记录到达机场的次数&#xff08;因为map会进行排序&#xff0c;可以求出最小路径&#xff09; class Solution { public:vector<string>res;unordered_map<stri…

高等数学之曲率

a代表改变角度 s代表弧长 圆的曲率

JAVA-编程基础-10-集合

Lison <dreamlison163.com>, v1.0.0, 2023.04.23 JAVA-编程基础-10-集合 文章目录 JAVA-编程基础-10-集合List、Set、Map、队列全面解析ListArrayList创建ArrayList 向ArrayList中添加元素 List、Set、Map、队列全面解析 Java 集合框架可以分为两条大的支线&#xff1a;…

OpenSIPS 注册终端 30s 自动挂断问题

文章目录 1. 背景2. 问题分析3. 案例解决 1. 背景 在开发呼叫中心应用时&#xff0c;使用 OpenSIPS 作为 SIP 注册服务器&#xff0c;测试发现偶现电话接通后 30s 左右自动挂断的问题。一个正常的 SIP 注册及呼叫流程如下所示&#xff0c;可以看到 OpenSIPS 作为转发层只负责代…

Spark Standalone环境搭建及测试

&#x1f947;&#x1f947;【大数据学习记录篇】-持续更新中~&#x1f947;&#x1f947; 篇一&#xff1a;Linux系统下配置java环境 篇二&#xff1a;hadoop伪分布式搭建&#xff08;超详细&#xff09; 篇三&#xff1a;hadoop完全分布式集群搭建&#xff08;超详细&#xf…

Unity 之 GameObject.Find()在场景中查找指定名称的游戏对象

文章目录 GameObject.Find 是 Unity 中的一个函数&#xff0c;用于在场景中查找指定名称的游戏对象。这个函数的主要作用是根据游戏对象的名称来查找并返回一个引用&#xff0c;使您能够在代码中操作该对象。以下是有关 GameObject.Find 的详细介绍&#xff1a; 函数签名&…

rust actix-web定义中间件(middleware)记录接口耗时(接口耗时中间件和鉴权中间件)

文章目录 Actix-web定义中间件(middleware)记录接口耗时中间件简介中间件添加的两种方式&#xff08;接口耗时中间件&#xff09;使用wrap_fn 闭包实现使用warp struct实现中间件调用顺序actix自带的接口耗时中间件 鉴权中间件 Actix-web定义中间件(middleware)记录接口耗时 …

一文全懂!带你了解芯片“流片”!

一、流片是什么&#xff1f; 流片(tape-out)是指通过一系列工艺步骤在流水线上制造芯片&#xff0c;是集成电路设计的最后环节&#xff0c;也就是送交制造。 流片即为"试生产"&#xff0c;简单来说就是设计完电路以后&#xff0c;先生产几片几十片&#xff0c;供测试…

Packet_Tracer的使用

一、实验目的&#xff1a; 通过该实验了解Packet Tracer的使用方法&#xff0c;能够用Packet Tracer建立和模拟网络模型。 二、主要任务&#xff1a; 1.熟悉PT的界面&#xff0c;了解按键用途。 2.尝试自己建立一个小型网络&#xff0c;并测试连通性。 3.学习P…

STM32--USART串口

文章目录 通信接口串口通信硬件电路电平标准参数时序 USART主要特性框图 数据帧发送器 波特率发生器SWART串口发送与接收工程串口收发数据包 通信接口 通信接口是指连接中央处理器&#xff08;CPU&#xff09;和标准通信子系统之间的接口&#xff0c;用于实现数据和控制信息在不…

【JVM 内存结构 | 程序计数器】

内存结构 前言简介程序计数器定义作用特点示例应用场景 主页传送门&#xff1a;&#x1f4c0; 传送 前言 Java 虚拟机的内存空间由 堆、栈、方法区、程序计数器和本地方法栈五部分组成。 简介 JVM&#xff08;Java Virtual Machine&#xff09;内存结构包括以下几个部分&#…

关于CC2652的看门狗和系统时钟的我呢

看门狗 可以在CCS的syscfg的ui中配置&#xff0c;如下图 如果想看相关例程&#xff0c;可以电极最顶部watchdog旁边的问号 相关问题&#xff1a; 例程中没有添加hw_wdt的头文件&#xff0c;需要#include <ti/devices/cc13x2_cc26x2/inc/hw_wdt.h>&#xff0c;否则在获…

全面介绍ERP采购审批管理

在现代企业中&#xff0c;采购管理对于保障企业正常运营和维护供应链的稳定性至关重要。然而&#xff0c;传统的手动采购审批流程常常存在效率低下、易出错和缺乏可追溯性等问题。为了解决这些问题&#xff0c;越来越多的企业选择采用ERP采购审批管理方法&#xff0c;以实现更高…

CentOS7 TAR安装 EMQX(MQTT)

1、软件下载 官网 --> 右上角[免费试用] --> EMQX 下载 --> EMQX 开源版 --> 选择版本 系统 --> [免费下载] 选择 tar.gz amd64 --> [立即下载] 选择对应下载方式 上传到 /usr/local/ 目录下。 2、安装 #进入操作目录 cd /usr/local#创建安装目录 mk…