文章目录
- 算法介绍
- 代码实现
- 结果展示
- 参考
算法介绍
Adam算法的发展经历了:SGD->SGDM->SGDNA->AdaGrad->AdaDelta->Adam->Adamax的过程。它是神经网络优化中的常用算法,在收敛速度上比较快,比SGD对收敛速度的纠结上有了很大的改进。但是该算法的学习率是不断减少的,可能收敛不到真正的最优解,实践中经常是前期Adam,后期SGD进行优化。
代码实现
现以如下无约束凸优化问题为例进行算法实施,
min
5
x
1
2
+
2
x
2
2
+
3
x
1
−
10
x
2
+
4
\min 5x^2_1+2x^2_2+3x_1−10x_2+4
min5x12+2x22+3x1−10x2+4
# Adam之实现
import numpy
from matplotlib import pyplot as plt
# 目标函数0阶信息
def func(X):
funcVal = 5 * X[0, 0] ** 2 + 2 * X[1, 0] ** 2 + 3 * X[0, 0] - 10 * X[1, 0] + 4
return funcVal
# 目标函数1阶信息
def grad(X):
grad_x1 = 10 * X[0, 0] + 3
grad_x2 = 4 * X[1, 0] - 10
gradVec = numpy.array([[grad_x1], [grad_x2]])
return gradVec
# 定义迭代起点
def seed(n=2):
seedVec = numpy.random.uniform(-100, 100, (n, 1))
return seedVec
class Adam(object):
def __init__(self, _func, _grad, _seed):
'''
_func: 待优化目标函数
_grad: 待优化目标函数之梯度
_seed: 迭代起始点
'''
self.__func = _func
self.__grad = _grad
self.__seed = _seed
self.__xPath = list()
self.__JPath = list()
def get_solu(self, alpha=0.001, beta1=0.9, beta2=0.999, epsilon=1.e-8, zeta=1.e-6, maxIter=3000000):
'''
获取数值解,
alpha: 步长参数
beta1: 一阶矩指数衰减率
beta2: 二阶矩指数衰减率
epsilon: 足够小正数
zeta: 收敛判据
maxIter: 最大迭代次数
'''
self.__init_path()
x = self.__init_x()
JVal = self.__calc_JVal(x)
self.__add_path(x, JVal)
grad = self.__calc_grad(x)
m, v = numpy.zeros(x.shape), numpy.zeros(x.shape)
for k in range(1, maxIter + 1):
# print("k: {:3d}, JVal: {}".format(k, JVal))
if self.__converged1(grad, zeta):
self.__print_MSG(x, JVal, k)
return x, JVal, True
m = beta1 * m + (1 - beta1) * grad
v = beta2 * v + (1 - beta2) * grad * grad
m_ = m / (1 - beta1 ** k)
v_ = v / (1 - beta2 ** k)
alpha_ = alpha / (numpy.sqrt(v_) + epsilon)
d = -m_
xNew = x + alpha_ * d
JNew = self.__calc_JVal(xNew)
self.__add_path(xNew, JNew)
if self.__converged2(xNew - x, JNew - JVal, zeta ** 2):
self.__print_MSG(xNew, JNew, k + 1)
return xNew, JNew, True
gNew = self.__calc_grad(xNew)
x, JVal, grad = xNew, JNew, gNew
else:
if self.__converged1(grad, zeta):
self.__print_MSG(x, JVal, maxIter)
return x, JVal, True
print("Adam not converged after {} steps!".format(maxIter))
return x, JVal, False
def get_path(self):
return self.__xPath, self.__JPath
def __converged1(self, grad, epsilon):
if numpy.linalg.norm(grad, ord=numpy.inf) < epsilon:
return True
return False
def __converged2(self, xDelta, JDelta, epsilon):
val1 = numpy.linalg.norm(xDelta, ord=numpy.inf)
val2 = numpy.abs(JDelta)
if val1 < epsilon or val2 < epsilon:
return True
return False
def __print_MSG(self, x, JVal, iterCnt):
print("Iteration steps: {}".format(iterCnt))
print("Solution:\n{}".format(x.flatten()))
print("JVal: {}".format(JVal))
def __calc_JVal(self, x):
return self.__func(x)
def __calc_grad(self, x):
return self.__grad(x)
def __init_x(self):
return self.__seed
def __init_path(self):
self.__xPath.clear()
self.__JPath.clear()
def __add_path(self, x, JVal):
self.__xPath.append(x)
self.__JPath.append(JVal)
class AdamPlot(object):
@staticmethod
def plot_fig(adamObj):
x, JVal, tab = adamObj.get_solu(0.1)
xPath, JPath = adamObj.get_path()
fig = plt.figure(figsize=(10, 4))
ax1 = plt.subplot(1, 2, 1)
ax2 = plt.subplot(1, 2, 2)
ax1.plot(numpy.arange(len(JPath)), JPath, "k.", markersize=1)
ax1.plot(0, JPath[0], "go", label="starting point")
ax1.plot(len(JPath)-1, JPath[-1], "r*", label="solution")
ax1.legend()
ax1.set(xlabel="$iterCnt$", ylabel="$JVal$")
x1 = numpy.linspace(-100, 100, 300)
x2 = numpy.linspace(-100, 100, 300)
x1, x2 = numpy.meshgrid(x1, x2)
f = numpy.zeros(x1.shape)
for i in range(x1.shape[0]):
for j in range(x1.shape[1]):
f[i, j] = func(numpy.array([[x1[i, j]], [x2[i, j]]]))
ax2.contour(x1, x2, f, levels=36)
x1Path = list(item[0] for item in xPath)
x2Path = list(item[1] for item in xPath)
ax2.plot(x1Path, x2Path, "k--", lw=2)
ax2.plot(x1Path[0], x2Path[0], "go", label="starting point")
ax2.plot(x1Path[-1], x2Path[-1], "r*", label="solution")
ax2.set(xlabel="$x_1$", ylabel="$x_2$")
ax2.legend()
fig.tight_layout()
# plt.show()
fig.savefig("plot_fig.png")
if __name__ == "__main__":
adamObj = Adam(func, grad, seed())
AdamPlot.plot_fig(adamObj)
结果展示
参考
https://www.cnblogs.com/xxhbdk/p/15063793.html
论文:Adam: A method for stochastic optimization