目录
摘要
一、电力负荷数据导入
二、输入输出数据归一化
三、建立和训练BP神经网络
四、 使用测试数据进行负荷预测
五、Matlab代码实现
摘要
使用BP神经网络实现简单的电力负荷回归预测任务。主要的步骤为:导入数据、数据归一化、建立BP神经网络、训练BP神经网络、使用测试数据预测负荷情况、误差分析以及绘图。
一、电力负荷数据导入
使用Matlab中的xlsread函数从指定的excel文件中提取电力负荷数据,可以自己制定需要导入的天数,这里设置导入5天的数据,如下图所示:
其他全部数据:
二、输入输出数据归一化
虽然神经⽹络的各层的输⼊信号分布不同,但最终“指向“的样本标记是不变的,即边缘概率不同⽽条件概率⼀致。 为了降低分布变化的影响,可使⽤归⼀化策略Normalization,把数据分布映射到⼀个确定的区间。神经⽹络中,常⽤的归⼀化策略有BN(Batch Normalization), WN(Weight Normalization), LN(Layer Normalization),IN(Instance Normalization)。
这里使用max-min归一化方法将数据全部归一化到0-1之间,归一化后的数据如下:
三、建立和训练BP神经网络
BP神经网络是一种多层前馈神经网络,在多层感知器的基础上增加误差逆向传播信号,用以处理非线性连续函数,该网络由输入层、隐含层、输出层构成,其主要特点是信号前向传递,误差反向传播,可以用在系统模型辨识、预测或控制中。在前向传递中,输入信号从输入层经隐含层逐层处理,直至输出层。每一层的神经元状态只影响下一层神经元状态。如果输出层得不到期望输出﹐则转入反向传播,根据预测误差调整网络权值和阈值﹐从而使BP神经网络预测输出不断逼近期望输出﹐其拓扑结构图如图1所示:
本文指定输入特征个数为1,输出特征个数为1,设置神经元个数为100,设置学习率为0.001,使用Matlab中的newff函数建构BP神经网络,使用train函数训练BP神经网络:
四、 使用测试数据进行负荷预测
测试结果:
五、Matlab代码实现
回复关键字:基于BP神经网络进行电力系统短期负荷预测