动手学深度学习—深度卷积神经网络AlexNet(代码详解)

news2024/10/6 16:19:10

AlexNet

  • 1. 学习表征
    • 1.1 缺少的成分:数据
    • 1.2 缺少的成分:硬件
  • 2. AlexNet
    • 2.1 模型设计
    • 2.2 激活函数
    • 2.3 容量控制和预处理
  • 3. 读取数据集
  • 4. 训练AlexNet

ImageNet classification with deep convolutional neural networks
原文链接:https://dl.acm.org/doi/abs/10.1145/3065386

中文翻译:https://blog.csdn.net/qq_38473254/article/details/132307508

使用深度卷积神经网络进行 ImageNet 分类

1. 学习表征

特征本身应该被学习

  1. 在合理地复杂性前提下,特征应该由多个共同学习的神经网络层组成,每个层都有可学习的参数;
  2. 在机器视觉中,最底层可能检测边缘、颜色和纹理;
  3. AlexNet的更高层建立在这些底层表示的基础上,以表示更大的特征,如眼睛、鼻子、草叶等等;
  4. 更高的层可以检测整个物体,如人、飞机、狗或飞盘;
  5. 最终的隐藏神经元可以学习图像的综合表示,从而使属于不同类别的数据易于区分。
    在这里插入图片描述

1.1 缺少的成分:数据

ImageNet数据集由斯坦福教授李飞飞小组的研究人员开发,利用谷歌图像搜索对每一类图像进行预筛选,并利用亚马逊众包来标注每张图片的相关类别。其有100万个样本中训练模型,以区分1000个不同类别的对象。

1.2 缺少的成分:硬件

GPU比CPU快几个数量级。
卷积神经网络中的计算瓶颈:卷积和矩阵乘法,都是可以在硬件上并行化的操作。

2. AlexNet

2.1 模型设计

在这里插入图片描述

2.2 激活函数

采用ReLU激活函数
在这里插入图片描述

2.3 容量控制和预处理

import torch
from torch import nn
from d2l import torch as d2l

net = nn.Sequential(
    # 这里使用一个11*11的更大窗口来捕捉对象。
    # 同时,步幅为4,以减少输出的高度和宽度。
    # 另外,输出通道的数目远大于LeNet
    nn.Conv2d(1, 96, kernel_size=11, stride=4, padding=1), nn.ReLU(),
    nn.MaxPool2d(kernel_size=3, stride=2),
    # 减小卷积窗口,使用填充为2来使得输入与输出的高和宽一致,且增大输出通道数
    nn.Conv2d(96, 256, kernel_size=5, padding=2), nn.ReLU(),
    nn.MaxPool2d(kernel_size=3, stride=2),
    # 使用三个连续的卷积层和较小的卷积窗口。
    # 除了最后的卷积层,输出通道的数量进一步增加。
    # 在前两个卷积层之后,汇聚层不用于减少输入的高度和宽度
    nn.Conv2d(256, 384, kernel_size=3, padding=1), nn.ReLU(),
    nn.Conv2d(384, 384, kernel_size=3, padding=1), nn.ReLU(),
    nn.Conv2d(384, 256, kernel_size=3, padding=1), nn.ReLU(),
    nn.MaxPool2d(kernel_size=3, stride=2),
    nn.Flatten(),
    # 这里,全连接层的输出数量是LeNet中的好几倍。使用dropout层来减轻过拟合
    nn.Linear(6400, 4096), nn.ReLU(),
    nn.Dropout(p=0.5),
    nn.Linear(4096, 4096), nn.ReLU(),
    nn.Dropout(p=0.5),
    # 最后是输出层。由于这里使用Fashion-MNIST,所以用类别数为10,而非论文中的1000
    nn.Linear(4096, 10))
# 构造一个高度和宽度都为224的单通道数据,来观察每一层输出的形状
X = torch.randn(1, 1, 224, 224)
for layer in net:
    X = layer(X)
    print(layer.__class__.__name__, 'output shape:\t', X.shape)

在这里插入图片描述

3. 读取数据集

"""
    定义精度评估函数:
    1、将数据集复制到显存中
    2、通过调用accuracy计算数据集的精度
"""
def evaluate_accuracy_gpu(net, data_iter, device=None): #@save
    # 判断net是否属于torch.nn.Module类
    if isinstance(net, nn.Module):
        net.eval()
        
        # 如果不在参数选定的设备,将其传输到设备中
        if not device:
            device = next(iter(net.parameters())).device
    
    # Accumulator是累加器,定义两个变量:正确预测的数量,总预测的数量。
    metric = d2l.Accumulator(2)
    with torch.no_grad():
        for X, y in data_iter:
            # 将X, y复制到设备中
            if isinstance(X, list):
                # BERT微调所需的(之后将介绍)
                X = [x.to(device) for x in X]
            else:
                X = X.to(device)
            y = y.to(device)
            
            # 计算正确预测的数量,总预测的数量,并存储到metric中
            metric.add(d2l.accuracy(net(X), y), y.numel())
    return metric[0] / metric[1]
"""
    定义GPU训练函数:
    1、为了使用gpu,首先需要将每一小批量数据移动到指定的设备(例如GPU)上;
    2、使用Xavier随机初始化模型参数;
    3、使用交叉熵损失函数和小批量随机梯度下降。
"""
#@save
def train_ch6(net, train_iter, test_iter, num_epochs, lr, device):
    """用GPU训练模型(在第六章定义)"""
    # 定义初始化参数,对线性层和卷积层生效
    def init_weights(m):
        if type(m) == nn.Linear or type(m) == nn.Conv2d:
            nn.init.xavier_uniform_(m.weight)
    net.apply(init_weights)
    
    # 在设备device上进行训练
    print('training on', device)
    net.to(device)
    
    # 优化器:随机梯度下降
    optimizer = torch.optim.SGD(net.parameters(), lr=lr)
    
    # 损失函数:交叉熵损失函数
    loss = nn.CrossEntropyLoss()
    
    # Animator为绘图函数
    animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs],
                            legend=['train loss', 'train acc', 'test acc'])
    
    # 调用Timer函数统计时间
    timer, num_batches = d2l.Timer(), len(train_iter)
    
    for epoch in range(num_epochs):
        
        # Accumulator(3)定义3个变量:损失值,正确预测的数量,总预测的数量
        metric = d2l.Accumulator(3)
        net.train()
        
        # enumerate() 函数用于将一个可遍历的数据对象
        for i, (X, y) in enumerate(train_iter):
            timer.start() # 进行计时
            optimizer.zero_grad() # 梯度清零
            X, y = X.to(device), y.to(device) # 将特征和标签转移到device
            y_hat = net(X)
            l = loss(y_hat, y) # 交叉熵损失
            l.backward() # 进行梯度传递返回
            optimizer.step()
            with torch.no_grad():
                # 统计损失、预测正确数和样本数
                metric.add(l * X.shape[0], d2l.accuracy(y_hat, y), X.shape[0])
            timer.stop() # 计时结束
            train_l = metric[0] / metric[2] # 计算损失
            train_acc = metric[1] / metric[2] # 计算精度
            
            # 进行绘图
            if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:
                animator.add(epoch + (i + 1) / num_batches,
                             (train_l, train_acc, None))
                
        # 测试精度
        test_acc = evaluate_accuracy_gpu(net, test_iter) 
        animator.add(epoch + 1, (None, None, test_acc))
        
    # 输出损失值、训练精度、测试精度
    print(f'loss {train_l:.3f}, train acc {train_acc:.3f},'
          f'test acc {test_acc:.3f}')
    
    # 设备的计算能力
    print(f'{metric[2] * num_epochs / timer.sum():.1f} examples/sec'
          f'on {str(device)}')

在这里插入图片描述

4. 训练AlexNet

# 这里使用的是Fashion-MNIST数据集以节省时间
# Fashion-MNIST图像的分辨率(28×28像素)低于ImageNet图像,将它们增加到224×224
batch_size = 128
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)
# 训练AlexNet:使用更小的学习速率训练,这是因为网络更深更广、图像分辨率更高
lr, num_epochs = 0.01, 10
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/910405.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

尚品汇项目(Day1)

项目结构介绍 vue-cli 脚手架初始化项目 node webpack 淘宝镜像 node_modules文件夹:项目依赖文件夹 public文件夹:一般放置静态资源(图片),需要注意:放在public文件夹中的静态资源,webpac…

套接字属性设置

基本概念 设置套接字的选项对套接字进行控制除了设置选项外,还可以获取选项选项的概念相当于属性,所以套接字选项也可说是套接字属性有些选项(属性)只可获取,不可设置有些选项既可设置也可获取 选项级别 SOL_SOCKET的…

功能性需求与非功能性需求的区别

如果你曾经负责过软件项目开展的全过程,就会知道需求定义在项目后期的重要性。清晰、明确的需求定义不仅有助于有效地管理客户期望,也有助于指导项目的顺利开展。 在项目前期阶段,如果需求定义不清晰,就会导致项目范围和成果定义…

Prompt-“设计提示模板:用更少数据实现预训练模型的卓越表现,助力Few-Shot和Zero-Shot任务”

Prompt任务(Prompt Tasks) 通过设计提示(prompt)模板,实现使用更少量的数据在预训练模型(Pretrained Model)上得到更好的效果,多用于:Few-Shot,Zero-Shot 等…

java.net.UnknownHostException 解决方法

原文链接:https://blog.csdn.net/qq_39390545/article/details/108755289 以下为复盘这里笔记 一般原因 1.服务器没网,调不到公网域名,无法解析出IP,从而无法识别host,导致无法连接; 2.网络端口映射做了…

最长有效括号——力扣32

int longestValidParentheses(string s){int res=0, n=s.size();int left=0

并查集 rank 的优化(Java 实例代码)

目录 并查集 rank 的优化 Java 实例代码 UnionFind3.java 文件代码: 并查集 rank 的优化 上一小节介绍了并查集基于 size 的优化,但是某些场景下,也会存在某些问题,如下图所示,操作 union(4,2)。 根据上一小节&…

三层架构实验

6 / 100 撤消 重做历史标题 加粗 颜色 背景其他列表对齐 水平线 块引用代码 资源绑定 表格 图像 视频 公式 链接 模版 目录 投票 宽屏 使用 MD 编辑器 文章标签 经验分享 添加文章标签 添加封面 标签图热门VIP 本地上传 思路:先配三层交换机,绑通道…

Pyqt5-开源工具分解功能(配置文件+快捷写入)

开源第五篇,配置文件及参数配置,先来看个图: 上述是自动化电池监测的简图。会根据json文件中的数据从而自动写入数据。 如何自动写入数据 从GIF中可以看到,选中的输入的标签都是QLineEdit,而QLineEdit的写入文本方法是.setText(str),注意这里是写入的文本是text,字符串。…

smiley-http-proxy-servlet 实现springboot 反向代理,项目鉴权,安全的引入第三方项目服务

背景: 项目初期 和硬件集成,实现了些功能服务,由于是局域网环境,安全问题当时都可以最小化无视。随着对接的服务越来越多,部分功能上云,此时就需要有一种手段可以控制到其他项目/接口的访问权限。 无疑 反向…

亿赛通电子文档安全管理系统 RCE漏洞复现(QVD-2023-19262)

0x01 产品简介 亿赛通电子文档安全管理系统(简称:CDG)是一款电子文档安全加密软件,该系统利用驱动层透明加密技术,通过对电子文档的加密保护,防止内部员工泄密和外部人员非法窃取企业核心重要数据资产&…

wifi-RTL8723-RK3568

文章目录 前言一、RTL8723DU二、原理图三、设备树四、修改drivers/net/wireless/rockchip_wlan目录下文件五、修改RTL8723DU代码工程修改Makefile文件修改驱动入口函数其他说明效果前言 本文主要介绍如何在RK3568平台下,参考官方文档移植RTL8723DU这款wifi模块 提示:以下是本…

【Redis从头学-7】Redis中的Set数据类型实战场景之用户画像去重、共同关注、专属粉丝

🧑‍💻作者名称:DaenCode 🎤作者简介:啥技术都喜欢捣鼓捣鼓,喜欢分享技术、经验、生活。 😎人生感悟:尝尽人生百味,方知世间冷暖。 📖所属专栏:Re…

ffmpeg合并mp4视频文件

下载ffmpeg Download FFmpeg 2配置环境 右键此电脑-》属性-》高级系统设置 环境变量-》path 解压上面ffmpeg压缩包,找到bin目录,复制完整路径,添加到path环境变量中 测试ffmpeg ffmpeg合并MP4文件 创建一个文本文件,例如inpu…

HarmonyOS学习路之方舟开发框架—学习ArkTS语言(状态管理 五)

管理应用拥有的状态概述 LocalStorage:页面级UI状态存储 LocalStorage是页面级的UI状态存储,通过Entry装饰器接收的参数可以在页面内共享同一个LocalStorage实例。LocalStorage也可以在UIAbility内,页面间共享状态。 本文仅介绍LocalStora…

Python土力学与基础工程计算.PDF-压水试验

Python 求解代码如下: 1. import math 2. 3. # 输入参数 4. L 2.0 # 试验段长度,m 5. Q 120.0 # 第三阶段计算流量,L/min 6. p 1.5 # 第三阶段试验段压力,MPa 7. r0 0.05 # 钻孔半径,m 8. 9. # 计算透…

SpringBoot 模板模式实现优惠券逻辑

一、计算逻辑的类结构图 在这张图里,顶层接口 RuleTemplate 定义了 calculate 方法,抽象模板类 AbstractRuleTemplate 将通用的模板计算逻辑在 calculate 方法中实现,同时它还定义了一个抽象方法 calculateNewPrice 作为子类的扩展点。各个具…

ES6 代理

一、代理 Proxy 用于修改某些操作的默认行为,等同于在语言层面做出修改,所以属于一种“元编程”(meta programming),即对编程语言进行编程。 Proxy 可以理解成,在目标对象之前架设一层“拦截”&#xff0…

比钻石还要硬硬40倍,有望被用来造宇宙飞船的新材料——碳炔

硬度是一种物理性质,它代表物质抵抗被划伤或变形的能力。硬度可以用不同的方法来测量,常见的有维氏硬度、摩氏硬度、布氏硬度等。其中,摩氏硬度是最简单也最常用的一种,它是根据不同物质之间能否互相划伤来排列出一个从1到10的等级…

nginx复现问题accept4() failed (24: Too many open files)

nginx在近两天连接数上去的时候业务有影响,错误日志频繁出现accept4() failed (24: Too many open files)报错信息,后续业务低峰自动恢复,以3种方式复现测试会报错的原因记录如下 请求模拟:使用nginx反向代理一个java后端 请求工…