第59步 深度学习图像识别:误判病例分析(TensorFlow)

news2024/12/23 22:43:31

基于WIN10的64位系统演示

一、写在前面

本期内容对等于机器学习二分类系列的误判病例分析(传送门)。既然前面的数据可以这么分析,那么图形识别自然也可以。

本期以mobilenet_v2模型为例,因为它建模速度快。

同样,基于GPT-4辅助编程,后续会分享改写过程。

二、误判病例分析实战

继续使用胸片的数据集:肺结核病人和健康人的胸片的识别。其中,肺结核病人700张,健康人900张,分别存入单独的文件夹中。

(a)直接分享代码

######################################导入包###################################
from tensorflow import keras
import tensorflow as tf
from tensorflow.python.keras.layers import Dense, Flatten, Conv2D, MaxPool2D, Dropout, Activation, Reshape, Softmax, GlobalAveragePooling2D, BatchNormalization
from tensorflow.python.keras.layers.convolutional import Convolution2D, MaxPooling2D
from tensorflow.python.keras import Sequential
from tensorflow.python.keras import Model
from tensorflow.python.keras.optimizers import adam_v2
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.python.keras.preprocessing.image import ImageDataGenerator, image_dataset_from_directory
from tensorflow.python.keras.layers.preprocessing.image_preprocessing import RandomFlip, RandomRotation, RandomContrast, RandomZoom, RandomTranslation
import os,PIL,pathlib
import warnings
#设置GPU
gpus = tf.config.list_physical_devices("GPU")

    
warnings.filterwarnings("ignore")             #忽略警告信息
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False    # 用来正常显示负号


################################导入数据集#####################################
data_dir = "./MTB"
data_dir = pathlib.Path(data_dir)
image_count = len(list(data_dir.glob('*/*')))
print("图片总数为:", image_count)

batch_size = 32
img_height = 100
img_width  = 100

# 创建一个数据集,其中包含所有图像的路径。
list_ds = tf.data.Dataset.list_files(str(data_dir/'*/*'), shuffle=True)
# 切分为训练集和验证集
val_size = int(image_count * 0.2)
train_ds = list_ds.skip(val_size)
val_ds = list_ds.take(val_size)

class_names = np.array(sorted([item.name for item in data_dir.glob('*') if item.name != "LICENSE.txt"]))
print(class_names)

def get_label(file_path):
    parts = tf.strings.split(file_path, os.path.sep)
    one_hot = parts[-2] == class_names
    return tf.argmax(one_hot)

def decode_img(img):
    img = tf.image.decode_jpeg(img, channels=3)
    img = tf.image.resize(img, [img_height, img_width])
    img = img / 255.0  # normalize to [0,1] range
    return img

def process_path_with_filename(file_path):
    label = get_label(file_path)
    img = tf.io.read_file(file_path)
    img = decode_img(img)
    return img, label, file_path

AUTOTUNE = tf.data.AUTOTUNE

# 在此处对train_ds和val_ds进行图像处理,包括添加文件名信息
train_ds_with_filenames = train_ds.map(process_path_with_filename, num_parallel_calls=AUTOTUNE)
val_ds_with_filenames = val_ds.map(process_path_with_filename, num_parallel_calls=AUTOTUNE)

# 对训练数据集进行批处理和预加载
train_ds_with_filenames = train_ds_with_filenames.batch(batch_size)
train_ds_with_filenames = train_ds_with_filenames.prefetch(buffer_size=AUTOTUNE)

# 对验证数据集进行批处理和预加载
val_ds_with_filenames = val_ds_with_filenames.batch(batch_size)
val_ds_with_filenames = val_ds_with_filenames.prefetch(buffer_size=AUTOTUNE)

# 在进行模型训练时,不需要文件名信息,所以在此处移除
train_ds = train_ds_with_filenames.map(lambda x, y, z: (x, y))
val_ds = val_ds_with_filenames.map(lambda x, y, z: (x, y))

for image, label, path in train_ds_with_filenames.take(1):
    print("Image shape: ", image.numpy().shape)
    print("Label: ", label.numpy())
    print("Path: ", path.numpy())


train_ds = train_ds.prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.prefetch(buffer_size=AUTOTUNE)

plt.figure(figsize=(10, 8))  # 图形的宽为10高为5
plt.suptitle("数据展示")

for images, labels, paths in train_ds_with_filenames.take(1):
    for i in range(15):
        plt.subplot(4, 5, i + 1)
        plt.xticks([])
        plt.yticks([])
        plt.grid(False)

        # 显示图片
        plt.imshow(images[i])
        # 显示标签
        plt.xlabel(class_names[labels[i]])

plt.show()


######################################数据增强函数################################

data_augmentation = Sequential([
  RandomFlip("horizontal_and_vertical"),
  RandomRotation(0.2),
  RandomContrast(1.0),
  RandomZoom(0.5, 0.2),
  RandomTranslation(0.3, 0.5),
])

def prepare(ds, augment=False):
    ds = ds.map(lambda x, y, z: (data_augmentation(x, training=True), y, z) if augment else (x, y, z), 
                num_parallel_calls=AUTOTUNE)
    return ds

train_ds_with_filenames = prepare(train_ds_with_filenames, augment=True)

# 在进行模型训练时,不需要文件名信息,所以在此处移除
train_ds = train_ds_with_filenames.map(lambda x, y, z: (x, y))
val_ds = val_ds_with_filenames.map(lambda x, y, z: (x, y))

train_ds = train_ds.prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.prefetch(buffer_size=AUTOTUNE)


###############################导入mobilenet_v2################################
#获取预训练模型对输入的预处理方法
from tensorflow.python.keras.applications import mobilenet_v2
from tensorflow.python.keras import Input, regularizers
IMG_SIZE = (img_height, img_width, 3)

base_model = mobilenet_v2.MobileNetV2(input_shape=IMG_SIZE, 
                                      include_top=False, #是否包含顶层的全连接层
                                      weights='imagenet')

inputs = Input(shape=IMG_SIZE)
#模型
x = base_model(inputs, training=False) #参数不变化
#全局池化
x = GlobalAveragePooling2D()(x)
#BatchNormalization
x = BatchNormalization()(x)
#Dropout
x = Dropout(0.8)(x)
#Dense
x = Dense(128, kernel_regularizer=regularizers.l2(0.1))(x)  # 全连接层减少到128,添加 L2 正则化
#BatchNormalization
x = BatchNormalization()(x)
#激活函数
x = Activation('relu')(x)
#输出层
outputs = Dense(2, kernel_regularizer=regularizers.l2(0.1))(x)  # 添加 L2 正则化
#BatchNormalization
outputs = BatchNormalization()(outputs)
#激活函数
outputs = Activation('sigmoid')(outputs)
#整体封装
model = Model(inputs, outputs)
#打印模型结构
print(model.summary())
#############################编译模型#########################################
#定义优化器
from tensorflow.python.keras.optimizers import adam_v2, rmsprop_v2

optimizer = adam_v2.Adam()


#编译模型
model.compile(optimizer=optimizer,
                loss='sparse_categorical_crossentropy',
                metrics=['accuracy'])

#训练模型
from tensorflow.python.keras.callbacks import ModelCheckpoint, Callback, EarlyStopping, ReduceLROnPlateau, LearningRateScheduler

NO_EPOCHS = 5
PATIENCE  = 10
VERBOSE   = 1

# 设置动态学习率
annealer = LearningRateScheduler(lambda x: 1e-5 * 0.99 ** (x+NO_EPOCHS))

# 设置早停
earlystopper = EarlyStopping(monitor='loss', patience=PATIENCE, verbose=VERBOSE)

# 
checkpointer = ModelCheckpoint('mtb_jet_best_model_mobilenetv3samll-1.h5',
                                monitor='val_accuracy',
                                verbose=VERBOSE,
                                save_best_only=True,
                                save_weights_only=True)

train_model  = model.fit(train_ds,
                  epochs=NO_EPOCHS,
                  verbose=1,
                  validation_data=val_ds,
                  callbacks=[earlystopper, checkpointer, annealer])

#保存模型
model.save('mtb_jet_best_model_mobilenet-1.h5')
print("The trained model has been saved.")

###########################误判病例分析#################################

# 训练模型后,现在使用模型对所有图片进行预测,并保存预测结果到csv文件中
import pandas as pd

# 保存预测结果的dataframe
result_df = pd.DataFrame(columns=["原始图片的名称", "属于训练集还是验证集", "预测为Tuberculosis的概率值", "判定的组别"])

# 对训练集和验证集中的每一批图片进行预测
for dataset, dataset_name in zip([train_ds_with_filenames, val_ds_with_filenames], ["训练集", "验证集"]):
    for images, labels, paths in dataset:
        # 使用模型对这一批图片进行预测
        probabilities = model.predict(images)
        predictions = tf.math.argmax(probabilities, axis=-1)

        # 遍历这一批图片
        for path, label, prediction, probability in zip(paths, labels, predictions, probabilities):
            # 获取图片名称和真实标签
            image_name = path.numpy().decode("utf-8").split('/')[-1]
            original_label = class_names[label]

            # 根据预测结果和真实标签,判定图片所属的组别
            group = None
            if original_label == "Tuberculosis" and probability[1] >= 0.5:
                group = "A"
            elif original_label == "Normal" and probability[1] < 0.5:
                group = "B"
            elif original_label == "Normal" and probability[1] >= 0.5:
                group = "C"
            elif original_label == "Tuberculosis" and probability[1] < 0.5:
                group = "D"

            # 将结果添加到dataframe中
            result_df = result_df.append({
                "原始图片的名称": image_name,
                "属于训练集还是验证集": dataset_name,
                "预测为Tuberculosis的概率值": probability[1],
                "判定的组别": group
            }, ignore_index=True)

# 保存结果到csv文件
result_df.to_csv("result.csv", index=False)

相比于之前的代码,主要有两处变化:

  1. 导入数据集部分:由之前的“image_dataset_from_directory”改成“tf.data.Dataset”,因为前者不能保存图片的原始路径和名称。而在误判病例分析中,我们需要知道每一张图片的名称、被预测的结果等详细信息。
  2. 误判病例分析部分:也就是需要知道哪些预测正确,哪些预测错误。

(b)调教GPT-4的过程

(b1)导入数据集部分:“image_dataset_from_directory”改成“tf.data.Dataset”

让GPT-4帮你改写即可,自行尝试:

################################导入数据集#####################################
data_dir = "./MTB"
data_dir = pathlib.Path(data_dir)
image_count = len(list(data_dir.glob('*/*')))
print("图片总数为:", image_count)

batch_size = 32
img_height = 100
img_width  = 100

# 创建一个数据集,其中包含所有图像的路径。
list_ds = tf.data.Dataset.list_files(str(data_dir/'*/*'), shuffle=True)
# 切分为训练集和验证集
val_size = int(image_count * 0.2)
train_ds = list_ds.skip(val_size)
val_ds = list_ds.take(val_size)

class_names = np.array(sorted([item.name for item in data_dir.glob('*') if item.name != "LICENSE.txt"]))
print(class_names)

def get_label(file_path):
    parts = tf.strings.split(file_path, os.path.sep)
    one_hot = parts[-2] == class_names
    return tf.argmax(one_hot)

def decode_img(img):
    img = tf.image.decode_jpeg(img, channels=3)
    img = tf.image.resize(img, [img_height, img_width])
    img = img / 255.0  # normalize to [0,1] range
    return img

def process_path_with_filename(file_path):
    label = get_label(file_path)
    img = tf.io.read_file(file_path)
    img = decode_img(img)
    return img, label, file_path

AUTOTUNE = tf.data.AUTOTUNE

# 在此处对train_ds和val_ds进行图像处理,包括添加文件名信息
train_ds_with_filenames = train_ds.map(process_path_with_filename, num_parallel_calls=AUTOTUNE)
val_ds_with_filenames = val_ds.map(process_path_with_filename, num_parallel_calls=AUTOTUNE)

# 对训练数据集进行批处理和预加载
train_ds_with_filenames = train_ds_with_filenames.batch(batch_size)
train_ds_with_filenames = train_ds_with_filenames.prefetch(buffer_size=AUTOTUNE)

# 对验证数据集进行批处理和预加载
val_ds_with_filenames = val_ds_with_filenames.batch(batch_size)
val_ds_with_filenames = val_ds_with_filenames.prefetch(buffer_size=AUTOTUNE)

# 在进行模型训练时,不需要文件名信息,所以在此处移除
train_ds = train_ds_with_filenames.map(lambda x, y, z: (x, y))
val_ds = val_ds_with_filenames.map(lambda x, y, z: (x, y))

for image, label, path in train_ds_with_filenames.take(1):
    print("Image shape: ", image.numpy().shape)
    print("Label: ", label.numpy())
    print("Path: ", path.numpy())


train_ds = train_ds.prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.prefetch(buffer_size=AUTOTUNE)

plt.figure(figsize=(10, 8))  # 图形的宽为10高为5
plt.suptitle("数据展示")

for images, labels, paths in train_ds_with_filenames.take(1):
    for i in range(15):
        plt.subplot(4, 5, i + 1)
        plt.xticks([])
        plt.yticks([])
        plt.grid(False)

        # 显示图片
        plt.imshow(images[i])
        # 显示标签
        plt.xlabel(class_names[labels[i]])

plt.show()


######################################数据增强函数################################

data_augmentation = Sequential([
  RandomFlip("horizontal_and_vertical"),
  RandomRotation(0.2),
  RandomContrast(1.0),
  RandomZoom(0.5, 0.2),
  RandomTranslation(0.3, 0.5),
])

def prepare(ds, augment=False):
    ds = ds.map(lambda x, y, z: (data_augmentation(x, training=True), y, z) if augment else (x, y, z), 
                num_parallel_calls=AUTOTUNE)
    return ds

train_ds_with_filenames = prepare(train_ds_with_filenames, augment=True)

# 在进行模型训练时,不需要文件名信息,所以在此处移除
train_ds = train_ds_with_filenames.map(lambda x, y, z: (x, y))
val_ds = val_ds_with_filenames.map(lambda x, y, z: (x, y))

train_ds = train_ds.prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.prefetch(buffer_size=AUTOTUNE)

代码解读:

数据导入:代码首先指定图像数据的存放路径(data_dir),并统计路径下的图像总数(image_count)。之后,它将图片的高度和宽度分别设定为100,并且指定批量处理的大小为32。

数据集创建:使用tf.data.Dataset.list_files创建一个包含所有图像路径的数据集,并通过洗牌(shuffle)打乱数据。然后,将20%的数据作为验证集,其余的作为训练集。

类别标签获取:根据文件夹名称作为类别标签,其中去除了名为"LICENSE.txt"的文件。

图像和标签处理:定义了几个函数来处理图像和标签。get_label函数通过切割文件路径获取类别标签并转为one-hot编码;decode_img函数将图像解码并调整大小,且将像素值归一化到[0,1]范围内;process_path_with_filename函数则通过调用前两个函数处理图像和标签。

并行处理和预加载:使用tf.data.AUTOTUNE对训练集和验证集进行并行处理和预加载,提高数据读取效率。

数据展示:展示了部分训练数据的图片、类别和文件路径,帮助我们对数据有个初步了解。

数据增强:定义了一个数据增强管道,其中包含了随机翻转、旋转、对比度调整、缩放和平移等操作。然后在训练集上应用这个数据增强管道。

(b2)误判病例分析部分

咒语:在{代码1}的基础上续写代码,达到下面要求:

(1)首先,提取出所有图片的“原始图片的名称”、“属于训练集还是验证集”、“预测为Tuberculosis的概率值”;文件的路劲格式为:例如,“MTB\Normal\Normal-690.png”属于Normal,也就是0标签,“MTB\Tuberculosis\Tuberculosis-680.png”属于Tuberculosis,也就是1标签;

(2)其次,由于模型以0.5为阈值,因此可以样本分为三份:(a)本来就是Tuberculosis的图片,预测为Tuberculosis的概率值大于等于0.5,则说明预测正确,判定为A组;(b)本来就是Normal的图片,预测为Tuberculosis的概率值小于0.5,则说明预测正确,判定为B组;(c)本来就是Normal的图片,预测为Tuberculosis的概率值大于等于0.5,则说明预测错误,判定为C组;(d)本来就是Tuberculosis的图片,预测为Tuberculosis的概率值小于0.5,则说明预测正确,判定为D组;

(3)居于以上计算的结果,生成一个名为result.csv表格文件。列名分别为:“原始图片的名称”、“属于训练集还是验证集”、“预测为Tuberculosis的概率值”、“判定的组别”。其中,“原始图片的名称”为所有1600张图片的图片名称;“属于训练集还是验证集”为这个图片属于训练集还是验证集;“预测为Tuberculosis的概率值”为模型预测该样本是Tuberculosis的概率值;“判定的组别”为根据步骤(3)判定的组别,A、B、C和D四组。

(4)需要把所有的图片都进行上面操作,注意是所有图片,而不只是一个批次的图片。

代码1为:{XXXX}

主要是把需求写清楚即可,代码及其解读:

# 训练模型后,现在使用模型对所有图片进行预测,并保存预测结果到csv文件中
import pandas as pd

# 保存预测结果的dataframe
result_df = pd.DataFrame(columns=["原始图片的名称", "属于训练集还是验证集", "预测为Tuberculosis的概率值", "判定的组别"])

# 对训练集和验证集中的每一批图片进行预测
for dataset, dataset_name in zip([train_ds_with_filenames, val_ds_with_filenames], ["训练集", "验证集"]):
    for images, labels, paths in dataset:
        # 使用模型对这一批图片进行预测
        probabilities = model.predict(images)
        predictions = tf.math.argmax(probabilities, axis=-1)

        # 遍历这一批图片
        for path, label, prediction, probability in zip(paths, labels, predictions, probabilities):
            # 获取图片名称和真实标签
            image_name = path.numpy().decode("utf-8").split('/')[-1]
            original_label = class_names[label]

            # 根据预测结果和真实标签,判定图片所属的组别
            group = None
            if original_label == "Tuberculosis" and probability[1] >= 0.5:
                group = "A"
            elif original_label == "Normal" and probability[1] < 0.5:
                group = "B"
            elif original_label == "Normal" and probability[1] >= 0.5:
                group = "C"
            elif original_label == "Tuberculosis" and probability[1] < 0.5:
                group = "D"

            # 将结果添加到dataframe中
            result_df = result_df.append({
                "原始图片的名称": image_name,
                "属于训练集还是验证集": dataset_name,
                "预测为Tuberculosis的概率值": probability[1],
                "判定的组别": group
            }, ignore_index=True)

# 保存结果到csv文件
result_df.to_csv("result.csv", index=False)

代码解读:

首先,代码创建了一个名为result_df的pandas DataFrame,用于存储预测结果。这个DataFrame有四个列,分别为"原始图片的名称"、"属于训练集还是验证集"、"预测为Tuberculosis的概率值"、"判定的组别"。

然后,代码开始遍历训练集和验证集中的每一批图片。对于每一批图片,首先使用训练好的模型进行预测,得到每个样本属于每个类别的概率值(probabilities)。然后,通过取概率值最大的类别作为预测结果(predictions)。

在对一批图片进行预测后,代码遍历这批图片。对于每个图片,代码首先从图片路径中获取图片名称(image_name),并从标签中获取图片的真实标签(original_label)。

然后,代码根据预测结果和真实标签判断图片属于哪个组别("A"、"B"、"C"、"D")。这里假设"Tuberculosis"和"Normal"是所有类别中的两个类别,而且概率值中的第二个元素表示的是预测为"Tuberculosis"的概率。具体的判断规则如下:

--如果真实标签是"Tuberculosis",且预测为"Tuberculosis"的概率值大于等于0.5,则图片属于组别"A"。

--如果真实标签是"Normal",且预测为"Tuberculosis"的概率值小于0.5,则图片属于组别"B"。

--如果真实标签是"Normal",且预测为"Tuberculosis"的概率值大于等于0.5,则图片属于组别"C"。

--如果真实标签是"Tuberculosis",且预测为"Tuberculosis"的概率值小于0.5,则图片属于组别"D"。

最后,代码将预测结果添加到result_df中,其中包含图片名称、数据集名称(训练集或验证集)、预测为"Tuberculosis"的概率值以及判定的组别。当所有图片都进行完预测后,将result_df保存为一个CSV文件

三、输出结果

 有了这个表,又可以水不少图了。

四、数据

链接:https://pan.baidu.com/s/15vSVhz1rQBtqNkNp2GQyVw?pwd=x3jf

提取码:x3jf

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/910044.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Linux下Jenkins安装 (最新)

环境概述 随着软件开发需求及复杂度的不断提高&#xff0c;团队开发成员之间如何更好地协同工作以确保软件开发的质量已经慢慢成为开发过程中不可回避的问题。Jenkins自动化部署可以解决集成、测试、部署等重复性的工作&#xff0c;工具集成的效率明显高于人工操作&#xff1b…

Android动画进阶指北

原文链接 Android Animation Advanced Tricks 前面的文章介绍了动画的基本使用方法&#xff0c;本文来聊一聊涉及到动画的高级技巧&#xff0c;以及一些非常优质的学习资源和动画三方库和框架。 页面之间的过渡动画 常规的动画都是针对某一页面上的某个元素做动画&#xff0c…

3、Spring_容器执行

容器执行点 1.整合 druid 连接池 添加依赖 <dependency><groupId>com.alibaba</groupId><artifactId>druid</artifactId><version>1.2.8</version> </dependency>1.硬编码方式整合 新建德鲁伊配置 <?xml version"1.…

微信小程序 车牌号输入组件

概述 一个小组件&#xff0c;用于方便用户输入车牌号码 详细 概述 有时候我们开发过程中会遇到需要用户输入车牌号的情况&#xff0c;让客户通过自带键盘输入&#xff0c;体验不好且容易出错&#xff0c;例如车牌号是不能输入O和I的&#xff0c;因此需要有一个自定义的键盘…

FPGA中锁存器(latch)、触发器(flip-flop)以及寄存器(register)详解

文章目录 1 定义1.1 锁存器&#xff08;latch&#xff09;1.2 触发器&#xff08;flip-flop&#xff09;1.3 寄存器&#xff08;register&#xff09; 2 比较2.1 锁存器&#xff08;Latch&#xff09;危害即产生原因2.2 寄存器和锁存器的区别2.3 锁存器和触发器的区别 3 结构3.…

dvwa环境搭建

靶场搭建 环境作用apache网站代理&#xff0c;部署网站php一种开源通用脚本语言&#xff0c;用来处理程序mysql数据库&#xff0c;用来存储数据 1.打开sever 2008&#xff0c;远程桌面连接&#xff0c;将文件拷贝到虚拟机&#xff0c;打开微软常用集合运行库&#xff0c;等待…

「Vue|网页开发|前端开发」01 快速入门:用vue-cli快速写一个Vue的HelloWorld项目

本文主要介绍如何用vue开发的标准化工具vue-cli快速搭建一个符合实际业务项目结构的hello world网页项目并理解vue的代码文件结构以及页面渲染流程。 文章目录 一、准备工作&#xff1a;安装node.js二、项目搭建创建项目目录全局安装vue-cli使用Webpack初始化项目启动项目学会…

RedisDesktopManager 连接redis

redis查看是否启动成功 ps -ef | grep redis以上未启动成功 cd /usr/local/bin/ 切换根目录 sudo -i 开启服务端 ./redis-server /usr/local/redis/redis.conf 开启客户端 ./redis-cli

Ganache 本地测试网远程连接

文章目录 前言1. 安装Ganache2. 安装cpolar3. 创建公网地址4. 公网访问连接5. 固定公网地址 前言 Ganache 是DApp的测试网络&#xff0c;提供图形化界面&#xff0c;log日志等&#xff1b;智能合约部署时需要连接测试网络。 Ganache 是一个运行在本地测试的网络,通过结合cpol…

MySQL如何进行表之间的关联更新

在实际编程工作或运维实践中&#xff0c;对MySQL数据库表进行关联更新是一种比较常见的应用场景&#xff0c;比如在电商系统中&#xff0c;订单表里保存了商品名称的信息&#xff08;冗余字段设计&#xff09;&#xff0c;但如果商品名称发生变化&#xff0c;则需要通过关联商品…

[已解决]SpringBoot 返回日期时间格式不正确

最近开发中不知道为什么&#xff0c;返回给前端的日期时间格式变成了这样子&#xff0c;晚了8小时&#xff0c;在网上找了解决办法&#xff1a; 原返回值&#xff1a; 需要修改的地方&#xff1a; 在application.yml中添加下面的代码&#xff0c;重启springboot项目即可。 sp…

C++信息学奥赛1121:计算矩阵边缘元素之和

题解&#xff1a;i0 or j0 or in-1 or jm-1 or in-1 or jm-1 代码&#xff1a; #include<iostream> // 包含输入输出流库 #include<cmath> // 包含数学函数库 using namespace std; // 使用标准命名空间int main() {int n,m;cin>>n>>m; // 输入…

2023年夏季《移动软件开发》实验报告一

姓名和学号&#xff1f;本实验属于哪门课程&#xff1f;中国海洋大学22夏《移动软件开发》实验名称&#xff1f;实验1&#xff1a;第一个微信小程序博客地址&#xff1f;XXXXXXXGithub仓库地址&#xff1f;https://github.com/enfantsRichesDeprimes/Mobile-Software-Developme…

vue2+element-ui+springboot编写一个简单的CRUD和上传页面

1.0先看效果图 2.0主功能页面展示 3.0新增功能 4.0更新功能 5.0接口错误提示 前端码云链接:https://gitee.com/xiaojianr/management/tree/master/ 前端拷贝完成需要使用:npm install 命令完成package.json依赖的下载 后端码云链接:https://gitee.com/xiaojianr/manage

21款奔驰E300 L升级ACC自适应巡航系统,解放双脚缓解驾驶疲劳

有的时候你是否厌倦了不停的刹车、加油&#xff1f;是不是讨厌急刹车&#xff0c;为掌握不好车距而烦恼&#xff1f;如果是这样&#xff0c;那么就升级奔驰原厂ACC自适应式巡航控制系统&#xff0c;带排队自动辅助和行车距离警报功能&#xff0c;感受现代科技带给你的舒适安全和…

Ubuntu20.04安装SNMP服务

在线安装snmp 1.安装snmp服务 sudo apt-get install updatesudo apt-get install snmp snmpd snmp-mibs-downloader2.重启SNMP服务 sudo /etc/init.d/snmpd restart3.查看snmp配置 sudo grep -Ev ^$|^# /etc/snmp/snmpd.conf 离线安装SNMP &#xff08;重要&#xff09; 我…

量子非凡去广告接口

量子非凡去广告接口&#xff0c;免费发布&#xff0c;请各位正常调用&#xff0c;别恶意攻击 >>>https://videos.centos.chat/weisuan.php/?url

二、2.打印和内联汇编

调用约定&#xff0c; calling conventions&#xff0c;从字面上理解&#xff0c;它是调用函数时的一套约定&#xff0c;是被调用代码的接口&#xff0c;它体现在 参数的传递方式&#xff0c;是放在寄存器中&#xff1f;栈中&#xff1f;还是两者混合&#xff1f; 参数的传递顺…

Docker 的数据管理与镜像

Docker 的数据管理与镜像 一、Docker 的数据管理1.数据卷2.数据卷容器3.端口映射4.容器互联&#xff08;使用centos镜像&#xff09; 二、Docker 镜像的创建1.基于现有镜像创建2.基于本地模板创建3.基于Dockerfile 创建 三、Dockerfile 操作常用的指令&#xff1a;1.FROM 镜像2…

RTSP/Onvif流媒体服务器EasyNVR安防视频平台一直提示网络请求失败的问题解决方案

EasyNVR平台优秀的视频能力在于通过RTSP/ONVIF协议&#xff0c;将前端接入设备的音视频资源进行采集&#xff0c;并转码成适合全平台、全终端分发的视频流格式&#xff0c;包括RTMP、RTSP、FLV、HLS、WebRTC等格式。 有用户反馈&#xff0c;EasyNVR使用过程中&#xff0c;突然提…