操作系统——操作系统内存管理基础

news2024/10/7 20:27:16

文章目录

  • 1.内存管理介绍
  • 2.常见的几种内存管理机制
  • 3.快表和多级页表
        • 快表
        • 多级页表
        • 总结
  • 4.分页机制和分段机制的共同点和区别
  • 5.逻辑(虚拟)地址和物理地址
  • 6.CPU 寻址了解吗?为什么需要虚拟地址空间?

1.内存管理介绍

操作系统的内存管理主要是做什么?

操作系统的内存管理主要负责内存的分配与回收(malloc 函数:申请内存,free 函数:释放内存),另外地址转换也就是将逻辑地址转换成相应的物理地址等功能也是操作系统内存管理做的事情。

2.常见的几种内存管理机制

操作系统的内存管理机制了解吗?内存管理有哪几种方式?

这个在学习操作系统的时候有了解过。

简单分为连续分配管理方式非连续分配管理方式这两种。连续分配管理方式是指为一个用户程序分配一个连续的内存空间,常见的如 块式管理 。同样地,非连续分配管理方式允许一个程序使用的内存分布在离散或者说不相邻的内存中,常见的如页式管理段式管理

  1. 块式管理 : 远古时代的计算机操系统的内存管理方式。将内存分为几个固定大小的块,每个块中只包含一个进程。如果程序运行需要内存的话,操作系统就分配给它一块,如果程序运行只需要很小的空间的话,分配的这块内存很大一部分几乎被浪费了。这些在每个块中未被利用的空间,我们称之为碎片。
  2. 页式管理 :把主存分为大小相等且固定的一页一页的形式,页较小,相对相比于块式管理的划分力度更大,提高了内存利用率,减少了碎片。页式管理通过页表对应逻辑地址和物理地址。
  3. 段式管理 : 页式管理虽然提高了内存利用率,但是页式管理其中的页实际并无任何实际意义。 段式管理把主存分为一段段的,每一段的空间又要比一页的空间小很多 。但是,最重要的是段是有实际意义的,每个段定义了一组逻辑信息,例如,有主程序段 MAIN、子程序段 X、数据段 D 及栈段 S 等。 段式管理通过段表对应逻辑地址和物理地址。
  4. 段页式管理机制 。段页式管理机制结合了段式管理和页式管理的优点。简单来说段页式管理机制就是把主存先分成若干段,每个段又分成若干页,也就是说 段页式管理机制 中段与段之间以及段的内部的都是离散的。

3.快表和多级页表

分页内存管理中,很重要的两点是:

  1. 虚拟地址到物理地址的转换要快。
  2. 解决虚拟地址空间大,页表也会很大的问题。

快表

为了解决虚拟地址到物理地址的转换速度,操作系统在 页表方案 基础之上引入了 快表 来加速虚拟地址到物理地址的转换。我们可以把快表理解为一种特殊的高速缓冲存储器(Cache),其中的内容是页表的一部分或者全部内容。作为页表的 Cache,它的作用与页表相似,但是提高了访问速率。由于采用页表做地址转换,读写内存数据时 CPU 要访问两次主存。有了快表,有时只要访问一次高速缓冲存储器,一次主存,这样可加速查找并提高指令执行速度。

使用快表之后的地址转换流程是这样的:

  1. 根据虚拟地址中的页号查快表;
  2. 如果该页在快表中,直接从快表中读取相应的物理地址;
  3. 如果该页不在快表中,就访问内存中的页表,再从页表中得到物理地址,同时将页表中的该映射表项添加到快表中;
  4. 当快表填满后,又要登记新页时,就按照一定的淘汰策略淘汰掉快表中的一个页。

看完了之后你会发现快表和我们平时经常在我们开发的系统使用的缓存(比如 Redis)很像,的确是这样的,操作系统中的很多思想、很多经典的算法,你都可以在我们日常开发使用的各种工具或者框架中找到它们的影子。

多级页表

引入多级页表的主要目的是为了避免把全部页表一直放在内存中占用过多空间,特别是那些根本就不需要的页表就不需要保留在内存中。多级页表属于时间换空间的典型场景,具体可以查看下面这篇文章

  • 多级页表如何节约内存:https://www.polarxiong.com/archives/多级页表如何节约内存.html

总结

为了提高内存的空间性能,提出了多级页表的概念;但是提到空间性能是以浪费时间性能为基础的,因此为了补充损失的时间性能,提出了快表(即 TLB)的概念。 不论是快表还是多级页表实际上都利用到了程序的局部性原理,局部性原理在后面的虚拟内存这部分会介绍到。

4.分页机制和分段机制的共同点和区别

分页机制和分段机制有哪些共同点和区别呢?

  1. 共同点
    • 分页机制和分段机制都是为了提高内存利用率,较少内存碎片。
    • 页和段都是离散存储的,所以两者都是离散分配内存的方式。但是,每个页和段中的内存是连续的。
  2. 区别
    • 页的大小是固定的,由操作系统决定;而段的大小不固定,取决于我们当前运行的程序。
    • 分页仅仅是为了满足操作系统内存管理的需求,而段是逻辑信息的单位,在程序中可以体现为代码段,数据段,能够更好满足用户的需要。

5.逻辑(虚拟)地址和物理地址

我们编程一般只有可能和逻辑地址打交道,比如在 C 语言中,指针里面存储的数值就可以理解成为内存里的一个地址,这个地址也就是我们说的逻辑地址,逻辑地址由操作系统决定。物理地址指的是真实物理内存中地址,更具体一点来说就是内存地址寄存器中的地址。物理地址是内存单元真正的地址。

6.CPU 寻址了解吗?为什么需要虚拟地址空间?

CPU 寻址了解吗?为什么需要虚拟地址空间?
现代处理器使用的是一种称为 虚拟寻址(Virtual Addressing) 的寻址方式。使用虚拟寻址,CPU 需要将虚拟地址翻译成物理地址,这样才能访问到真实的物理内存。 实际上完成虚拟地址转换为物理地址转换的硬件是 CPU 中含有一个被称为 内存管理单元(Memory Management Unit, MMU) 的硬件。如下图所示:

在这里插入图片描述
为什么要有虚拟地址空间呢?

先从没有虚拟地址空间的时候说起吧!没有虚拟地址空间的时候,程序都是直接访问和操作的都是物理内存 。但是这样有什么问题呢?

  1. 用户程序可以访问任意内存,寻址内存的每个字节,这样就很容易(有意或者无意)破坏操作系统,造成操作系统崩溃。
  2. 想要同时运行多个程序特别困难,比如你想同时运行一个微信和一个 QQ 音乐都不行。为什么呢?举个简单的例子:微信在运行的时候给内存地址 1xxx 赋值后,QQ 音乐也同样给内存地址 1xxx 赋值,那么 QQ 音乐对内存的赋值就会覆盖微信之前所赋的值,这就造成了微信这个程序就会崩溃。

总结来说:如果直接把物理地址暴露出来的话会带来严重问题,比如可能对操作系统造成伤害以及给同时运行多个程序造成困难。

通过虚拟地址访问内存有以下优势:

  • 程序可以使用一系列相邻的虚拟地址来访问物理内存中不相邻的大内存缓冲区。
  • 程序可以使用一系列虚拟地址来访问大于可用物理内存的内存缓冲区。当物理内存的供应量变小时,内存管理器会将物理内存页(通常大小为 4 KB)保存到磁盘文件。数据或代码页会根据需要在物理内存与磁盘之间移动。
  • 不同进程使用的虚拟地址彼此隔离。一个进程中的代码无法更改正在由另一进程或操作系统使用的物理内存。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/903980.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

solidwords(6)

从右视图开始,分上下两部分 标题 这里的薄壁要留意一下怎么算的(单向:默认向内;如果想向外记得选反向)

Vue2+Vue3笔记(尚硅谷张天禹老师)day01

只是记录,初心是为了让页面更好看,会有错误 环境准备 下载vue:Vue下载 下面两个是可选的,主要是我想让控制台干净点 vue_dev_tool安装 vue_dev_tool安装 : Vue 控制台出现You are running Vue in development mode. Make sure to turn on production mode when dep…

unity之Input.GetKeyDown与Input.GetKey区别

文章目录 Input.GetKeyDown与Input.GetKey区别 Input.GetKeyDown与Input.GetKey区别 Input.GetKey 和 Input.GetKeyDown 是 Unity 中用于检测按键状态的两个不同函数。它们之间的区别在于何时触发。 Input.GetKey(KeyCode key): 这个函数会在用户按住指定的键时触发&#xff0…

CountDownLatch和CyclicBarrie

前置提要 什么是闭锁对象 闭锁对象(Latch Object)是一种同步工具,用于控制线程的等待和执行顺序。闭锁对象可以让一个或多个线程等待,直到特定的条件满足后才能继续执行。 在Java中,CountDownLatch就是一种常见的闭锁对…

【AI大模型】训练Al大模型

大模型超越AI 前言 洁洁的个人主页 我就问你有没有发挥! 知行合一,志存高远。 目前所指的大模型,是“大规模深度学习模型”的简称,指具有大量参数和复杂结构的机器学习模型,可以处理大规模的数据和复杂的问题&#x…

C语言刷题指南(三)

📙作者简介: 清水加冰,目前大二在读,正在学习C/C、Python、操作系统、数据库等。 📘相关专栏:C语言初阶、C语言进阶、C语言刷题训练营、数据结构刷题训练营、有感兴趣的可以看一看。 欢迎点赞 &#x1f44d…

JS-Array数组方法reduce()

reduce方法 // 可以与箭头函数一起使用 array.reduce((total,curVal) > total curVal, initVal) array.reduce(function(total, currentValue, currentIndex, arr), initialValue) 例子: // a:总和/累加项 // c:每一项的值 const allCount compu…

实验三 nfs 服务器环境搭建

nfs 服务器环境搭建 nfs(Network File System)即网络文件系统,其基于UDP/IP 使用nfs能够在不同计算机之间通过网络进行文件共享,能使使用 者访问网络上其它计算机中的文件就像在访问自己的计算机一样。 【实验目的】 掌握 nfs 环…

RT1052的XBAR

文章目录 XBAR2函数2.1 XBARA_Init2.2XBARA1_Signal_Set XBAR XBAR 是 RT1052 芯片自带的内部外设交错开关矩阵 它可以将 RT1052 内部外设的输出(或 IO 口的输入)映射到另外一部分内部外设的输入(或 IO 口的输出)上,…

WordPress用于您的企业网站的优点和缺点

如今,WordPress 被广泛认为是一个可靠、可扩展且安全的平台,能够为商业网站提供支持。然而,许多人质疑 WordPress 是否是适合企业的平台。 这就是我们创建本指南的原因。通过探索 WordPress 的优点和缺点,您可以确定世界上最受欢…

低代码自动化解析:企业所需了解的全面指南

根据2020年以来与低代码技术相关的积极趋势,Gartner预测到2023年低代码开发技术市场将增长20%。此外,他们还预计,到2026年,非正式IT部门的开发人员将占低代码开发工具用户群至少80%的比例,而这一比例在2021年为60%。基…

服务器感染了.360勒索病毒,如何确保数据文件完整恢复?

引言: 随着科技的不断进步,互联网的普及以及数字化生活的发展,网络安全问题也逐渐成为一个全球性的难题。其中,勒索病毒作为一种危害性极高的恶意软件,在近年来频频袭扰用户。本文91数据恢复将重点介绍 360 勒索病毒&a…

C++快速回顾(二)

前言 在Android音视频开发中,网上知识点过于零碎,自学起来难度非常大,不过音视频大牛Jhuster提出了《Android 音视频从入门到提高 - 任务列表》,结合我自己的工作学习经历,我准备写一个音视频系列blog。C/C是音视频必…

HDU-7314 2023“钉耙编程”杭电多校赛(4)Data Generation

HDU-7314 2023“钉耙编程”杭电多校赛(4)Data Generation 题目大意 给定 n n n和 m m m,求下面的算法中 a n s ans ans的期望值模 998244353 998244353 998244353后的结果。 有 T T T组数据。 1 ≤ T ≤ 1 0 5 , 1 ≤ n ≤ 1 0 18 , 0 ≤ m…

一种新型的4H-SiC超结共模场效应晶体管(UMOSFET),具有异质结二极管,以提高反向恢复特性

标题:A novel 4H-SiC super junction UMOSFET with heterojunction diode for enhanced reverse recovery characteristics 摘要 摘要—本文提出并通过数值模拟研究了一种新型的碳化硅(SiC)超结共模场效应晶体管(UMOSFET&#xf…

Python批量爬虫下载文件——把Excel中的超链接快速变成网址

本文的背景是:大学关系很好的老师问我能不能把Excel中1000个超链接网址对应的pdf文档下载下来。虽然可以手动一个一个点击下载,但是这样太费人力和时间了。我想起了之前的爬虫经验,给老师分析了一下可行性,就动手实践了。    没…

企业展示小程序搭建指南

如今,移动互联网的快速发展,为企业展示提供了更多元化的方式。除了传统的宣传手段,企业还可以借助小程序来展示自己的实力和产品。本文将为大家介绍一种简单的DIY小程序的方法,让企业能够快速打造自己的展示平台。 首先&#xff0…

在线SHA384计算哈希(不可逆的加密又称摘要)工具

具体请前往:在线计算Sha384摘要工具

leetcode做题笔记92. 反转链表 II

给你单链表的头指针 head 和两个整数 left 和 right &#xff0c;其中 left < right 。请你反转从位置 left 到位置 right 的链表节点&#xff0c;返回 反转后的链表 。 示例 1&#xff1a; 思路一&#xff1a;头插法 struct ListNode *reverseBetween(struct ListNode *h…

python绘制谷歌地图

谷歌地图 更多好看的图片见pyecharts官网 import pyecharts.options as opts from pyecharts.charts import MapGlobe from pyecharts.faker import POPULATIONdata [x for _, x in POPULATION[1:]] low, high min(data), max(data)c (MapGlobe().add_schema().add(mapty…