回归预测 | MATLAB实现TSO-LSSVM金枪鱼群算法优化最小二乘支持向量机多输入单输出回归预测(多指标,多图)

news2025/1/21 20:03:27

回归预测 | MATLAB实现TSO-LSSVM金枪鱼群算法优化最小二乘支持向量机多输入单输出回归预测(多指标,多图)

目录

    • 回归预测 | MATLAB实现TSO-LSSVM金枪鱼群算法优化最小二乘支持向量机多输入单输出回归预测(多指标,多图)
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

1
2
3

基本介绍

回归预测 | MATLAB实现TSO-LSSVM金枪鱼群算法优化最小二乘支持向量机多输入单输出回归预测(多指标,多图),输入多个特征,输出单个变量,多输入单输出回归预测;
多指标评价,代码质量极高;excel数据,方便替换,运行环境2018及以上。

程序设计

  • 完整源码和数据获取方式:私信回复MATLAB实现TSO-LSSVM金枪鱼群算法优化最小二乘支持向量机多输入单输出回归预测(多指标,多图)
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  导入数据
res = xlsread('data.xlsx');

%%  划分训练集和测试集
temp = randperm(103);

P_train = res(temp(1: 80), 1: 7)';
T_train = res(temp(1: 80), 8)';
M = size(P_train, 2);

P_test = res(temp(81: end), 1: 7)';
T_test = res(temp(81: end), 8)';
N = size(P_test, 2);

%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);



%%  仿真测试
t_sim1 = sim(net, p_train);
t_sim2 = sim(net, p_test);

%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);

%%  均方根误差
error1 = sqrt(sum((T_sim1 - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2 - T_test ).^2) ./ N);



%%  相关指标计算
% 决定系数 R2
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test -  T_sim2)^2 / norm(T_test -  mean(T_test ))^2;

disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])

% 平均绝对误差 MAE
mae1 = sum(abs(T_sim1 - T_train)) ./ M ;
mae2 = sum(abs(T_sim2 - T_test )) ./ N ;

disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])

% 平均相对误差 MBE
mbe1 = sum(T_sim1 - T_train) ./ M ;
mbe2 = sum(T_sim2 - T_test ) ./ N ;

disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/903146.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

五种网络IO模型

五种模型出自:RFC标准。可参考: 《UNIX网络编程-卷一》 6.2 很多程序员是从高级语言的网络编程/文件操作了解到nio,继而了解到五种io模型的; 这五种io模型不止用于网络io “阻塞与****系统调用”是怎么回事?我知道了线…

Redis之持久化机制

文章目录 一、redis持久化二、持久化方式2.1. RDB方式2.1.1 RDB手动2.1.2 RDB自动2.1.3RDB优缺点 2.2AOF方式2.2.1 AOF写数据遇到的问题2.2.2 AOF重写方式 二、RDB和AOF优缺点对比总结 一、redis持久化 Redis 是内存数据库,如果不将内存中的数据库状态保存到磁盘&a…

Azure防火墙

文章目录 什么是Azure防火墙如何部署和配置创建虚拟网络创建虚拟机创建防火墙创建路由表,关联子网、路由配置防火墙策略配置应用程序规则配置网络规则配置 DNAT 规则 更改 Srv-Work 网络接口的主要和辅助 DNS 地址测试防火墙 什么是Azure防火墙 Azure防火墙是一种用…

ELK日志监控系统搭建docker版

目录 日志来源elk介绍elasticsearch介绍logstash介绍kibana介绍 部署elasticsearch拉取镜像:docker pull elasticsearch:7.17.9修改配置⽂件:/usr/share/elasticsearch/config/elasticsearch.yml启动容器设置密码(123456)忘记密码…

Redis从基础到进阶篇(一)

目录 一、了解NoSql 1.1 什么是Nosql 1.2 为什么要使用NoSql 1.3 NoSql数据库的优势 1.4 常见的NoSql产品 1.5 各产品的区别 二、Redis介绍 2.1什么是Redis 2.2 Redis优势 2.3 Redis应用场景 2.4 Redis下载 三、Linux下安装Redis 3.1 环境准备 3.2 Redis的…

Win11右键显示更多选项

不需要重启电脑,重启资源管理器即可,用命令:taskkill /f /im explorer.exe & start explorer.exe

一、Kafka概述

目录 1.3 Kafka的基础架构 1.3 Kafka的基础架构 Producer:消息生产者,就是向 Kafka broker 发消息的客户端Consumer:消息消费者,向 Kafka broker 取消息的客户端。Consumer Group(CG):消费者组&…

浅析深浅拷贝

我们在对对象进行复制时就用到深浅拷贝。 一、普通复制 <script>const people{name:tim,age:22}const testpeople;console.log(test);//tim 22test.age20;console.log(test);//tim 20console.log(people);//tim 20 </script> 控制台打印结果&#xff1a; 之所以…

使用struct解析通达信本地Lday日线数据

★★★★★博文原创不易&#xff0c;我的博文不需要打赏&#xff0c;也不需要知识付费&#xff0c;可以白嫖学习编程小技巧&#xff0c;喜欢的老铁可以多多帮忙点赞&#xff0c;小红牛在此表示感谢。★★★★★ 在Python中&#xff0c;struct模块提供了二进制数据的打包和解包…

使用transformers生成文本Generating text with transformers

到目前为止&#xff0c;您已经看到了Transformers架构内部的一些主要组件的高级概述。但您还没有看到从头到尾的整体预测过程是如何工作的。让我们通过一个简单的例子来了解。在这个例子中&#xff0c;您将查看一个翻译任务或一个序列到序列的任务&#xff0c;这恰好是Transfor…

破解难题:如何应对项目中的‘老油条’障碍

引言 在项目管理的实践中&#xff0c;我们经常遇到各种各样的人员挑战。其中&#xff0c;有一种特殊的挑战被称为“老油条”现象。这些“老油条”通常在表面上表现得非常配合&#xff0c;但在实际工作中却常常没有任何进展。这种情况不仅会影响项目的进度&#xff0c;还可能对…

机器学习---常见的距离公式(欧氏距离、曼哈顿距离、标准化欧式距离、余弦距离、杰卡德距离、马氏距离、切比雪夫距离、闵可夫斯基距离、K-L散度)

1. 欧氏距离 欧几里得度量&#xff08;euclidean metric&#xff09;&#xff08;也称欧氏距离&#xff09;是一个通常采用的距离定义&#xff0c;指在m维空 间中两个点之间的真实距离&#xff0c;或者向量的自然长度&#xff08;即该点到原点的距离&#xff09;。在二维和三维…

Spring(16) Aware结尾的类整理

目录 一、什么是 Aware 结尾的类&#xff1f;二、常见的 Aware 实现接口三、Aware 实现原理 一、什么是 Aware 结尾的类&#xff1f; 在 Spring Boot 中&#xff0c;以 Aware 结尾的类通常是一些继承了 Aware 接口的接口类&#xff0c;它们用于使 Bean 获取某些特定的能力或资…

AJAX的POST请求在chrome浏览器报net::ERR_CONNECTION_RESET问题

背景说明 公司对前端的所有的AJAX请求做了统一的封装&#xff0c;因此业务上需要发起请求调用后端服务时&#xff0c;使用的都是公司封装好的工具。 由于ERR_CONNECTION_RESET问题比较粗&#xff0c;也就是说可能会有很多原因会导致浏览器报这个错&#xff0c;因此在网上可以…

clion软件ide的安装和环境配置@ubuntu

1.官网&#xff1a; Download CLion 2.安装Clion 直接在官网下载并安装即可&#xff0c;过程很简单 https://www.jetbrains.com/clion/ https://www.jetbrains.com/clion/download/#sectionlinux 3.激活码 4.配置Clion 安装gcc、g、make Ubuntu中用到的编译工具是gcc©…

Java面向对象——多态、Object类、instanceof关键字以及final关键字

多态的概念 1.多态是指同一个方法调用可以在不同的对象上有不同的表现&#xff0c;即同一种方法调用方式适用于不同的数据类型。 编译时和运行时&#xff1a;编译时期调用的是父类中的方法&#xff0c;但运行时期会根据实际的对象类型来调用适当的方法。这种行为称为动态绑定&…

自注意力机制简介Transformers: Attention is all you need

“Attention is All You Need” 是一篇由Google研究人员在2017年发表的研究论文&#xff0c;该论文介绍了Transformer模型&#xff0c;这是一种革命性的架构&#xff0c;它彻底改变了自然语言处理&#xff08;NLP&#xff09;领域&#xff0c;并成为我们现在所知道的LLMs的基础…

剪枝基础与实战(1): 概述

本文介绍基于L1正则化的剪枝原理,并以VGG网络进行实战说明。将从零详细介绍模型训练、稀疏化、剪枝、finetune的全过程,提供详细的源码及说明,有助于对剪枝的熟练掌握,后续也会对yolov8进行剪枝的介绍。 论文: Learning Efficient Convolutional Networks through Network …

学习笔记|基于Delay实现的LED闪烁|模块化编程|SOS求救灯光|STC32G单片机视频开发教程(冲哥)|第六集(下):实现LED闪烁

文章目录 2 函数的使用1.函数定义&#xff08;需要带类型&#xff09;2.函数声明&#xff08;需要带类型&#xff09;3.函数调用 3 新建文件&#xff0c;使用模块化编程新建xxx.c和xxx.h文件xxx.h格式&#xff1a;调用头文件验证代码调用&#xff1a;完整的文件结构如下&#x…