(二)结构型模式:5、装饰器模式(Decorator Pattern)(C++实例)

news2024/11/23 1:35:40

目录

1、装饰器模式(Decorator Pattern)含义

2、装饰器模式的UML图学习

3、装饰器模式的应用场景

4、装饰器模式的优缺点

5、C++实现装饰器模式的简单实例


1、装饰器模式(Decorator Pattern)含义

装饰模式(Decorator),动态地给一个对象添加一些额外地职责,就增加功能来说,装饰模式比生成子类更为灵活【DP】

装饰模式(Decorator Pattern)是一种结构型设计模式,它允许你在不改变现有对象结构的情况下,动态地向对象添加额外的功能。

装饰模式通过将对象包装在装饰器类中,实现了透明地扩展对象的能力。

2、装饰器模式的UML图学习

 组成元素:

(1)Component是定义一个对象接口,可以给这些对象动态地添加职责;

(2)ConcreteComponent是定义了一个具体地对象,也可以给这个对象添加一些职责;

(3)Decorator,装饰抽象类,继承了Component,从外类来扩展Component类的功能,但对于Component来说,是无需知道Decorator的存在的。至于ConcreteDecorator就是具体的装饰对象,起到给Component添加职责的功能【DPE】

3、装饰器模式的应用场景

(1)IO流操作:在IO流中,可以使用装饰器模式来添加缓冲、加密、压缩等功能,而无需修改原始的IO类。

(2)GUI组件:在图形用户界面中,可以使用装饰器模式来为组件添加边框、滚动条、阴影等外观效果。

(3)日志记录:可以使用装饰器模式来为日志记录器添加时间戳、日志级别等额外信息。

(4)权限控制:可以使用装饰器模式来为对象添加权限验证、身份认证等功能。

总之,装饰器模式适用于需要动态地为对象添加功能,并且希望保持对象接口的一致性的场景。

它提供了一种灵活、可扩展和可维护的方式来处理对象功能的变化和组合。

4、装饰器模式的优缺点

(1)优点:

1)动态地为对象添加功能:装饰器模式允许在运行时动态地为对象添加额外的功能,而无需修改原始对象的结构。这对于需要灵活地扩展对象功能的情况非常有用。

2)避免使用子类进行扩展:通过使用装饰器模式,可以避免创建大量的子类来实现不同组合的功能。相反,可以通过组合和堆叠装饰器来实现各种功能组合,从而更好地管理和维护代码。

3)对象功能的透明性:装饰器模式使得客户端可以透明地使用被装饰对象和装饰后的对象,无需关心具体对象的类型。这样可以简化客户端代码,并且使得代码更加清晰易懂。

4)单一职责原则:装饰器模式可以将功能划分到不同的装饰器中,每个装饰器只负责一个特定的功能,符合单一职责原则。这样可以使得代码更加可维护和可扩展。

(2)缺点:

1)增加复杂性:使用装饰器模式会引入更多的类和对象,从而增加了系统的设计复杂性。这可能会导致代码结构变得复杂,不易理解和维护。

2)多层装饰影响性能:当使用多个装饰器进行功能堆叠时,可能会对性能产生一定的影响。每个装饰器都会增加额外的处理逻辑,可能会导致性能下降。

3)可能造成对象过度膨胀:如果使用过多的装饰器或者装饰器的组合方式不合理,可能会导致对象过度膨胀,使得系统资源消耗增加。

总结:尽管装饰器模式存在一些缺点,但它仍然是一种强大且常用的设计模式,特别适用于需要动态地为对象添加功能的场景。

在使用装饰器模式时,需要根据具体的需求和系统设计来权衡其优缺点,并确保合理地应用该模式。

5、C++实现装饰器模式的简单实例

#include <iostream>

// 抽象组件
class Component 
{
public:
    virtual void operation() const = 0;
};

// 具体组件
class ConcreteComponent : public Component 
{
public:
    void operation() const override 
    {
        std::cout << "ConcreteComponent operation" << std::endl;
    }
};

// 抽象装饰器
class Decorator : public Component 
{
protected:
    Component* component;

public:
    Decorator(Component* component) : component(component) {}

    void operation() const override 
    {
        if (component != nullptr) 
        {
            component->operation();
        }
    }
};

// 具体装饰器
class ConcreteDecorator : public Decorator 
{
public:
    ConcreteDecorator(Component* component) : Decorator(component) {}

    void operation() const override 
    {
        Decorator::operation();
        additionalOperation();
    }

    void additionalOperation() const 
    {
        std::cout << "Additional operation" << std::endl;
    }
};

int main()
 {
    // 创建具体组件对象
    Component* component = new ConcreteComponent();

    // 使用具体装饰器包装具体组件对象
    Component* decoratedComponent = new ConcreteDecorator(component);

    // 调用装饰后的操作方法
    decoratedComponent->operation();

    delete decoratedComponent;
    delete component;

    return 0;
}

在上述示例中,我们定义了一个 Component 接口作为抽象组件,其中包含了一个 operation 方法。ConcreteComponent 类表示具体组件,实现了抽象组件的接口。

Decorator 类是抽象装饰器,继承自 Component,并且持有一个 Component 的引用。它通过该引用调用被装饰对象的方法。

ConcreteDecorator 类是具体装饰器,继承自 Decorator,并实现了具体的装饰逻辑。在 operation 方法中,它先调用父类的 operation 方法,然后执行额外的操作。

在 main 函数中,我们创建了一个具体组件对象 component,并使用具体装饰器 ConcreteDecorator 对其进行包装。最后,调用装饰后的操作方法 decoratedComponent->operation(),会先执行具体组件的操作方法,然后执行具体装饰器的额外操作。

运行以上代码,输出将会是:

ConcreteComponent operation

Additional operation

可以看到,通过装饰模式,我们在不改变具体组件对象的情况下,动态地为其添加了额外的功能。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/882679.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

学习 Iterator 迭代器

今天看到一个面试题&#xff0c; 让下面解构赋值成立。 let [a,b] {a:1,b:2} 如果我们直接在浏览器输出这行代码&#xff0c;会直接报错&#xff0c;说是 {a:1,b:2} 不能迭代。 看了es6文档后&#xff0c;具有迭代器的就一下几种类型&#xff0c;没有Object类型&#xff0c;…

探索Java中的静态变量与实例变量:存储区域、生命周期以及内存分配方式的区别

文章目录 静态变量实例变量不可变对象静态变量和实例变量有什么区别&#xff1f;静态变量实例变量 Object 类都有哪些公共方法&#xff1f;Java 创建对象有哪几种方式&#xff1f;ab 与 a.equals(b) 有什么区别&#xff1f;总结 &#x1f389;欢迎来到Java面试技巧专栏~探索Jav…

Nacos详解(springcloud+nacos实战)

Nacos详解 Nacos1.介绍2.Nacos专业术语2.1 服务 (Service)2.2 服务注册中心 (Service Registry)2.3服务提供方 (Service Provider)2.4服务消费方 (Service Consumer)2.5版本依赖关系 Nacos 注册中心1. 启动NacosServer2 使用 Nacos 做注册中心2.1 nacos-client-b2.2 nacos-clie…

部门用户权限应用的设计和创建(进行中)

数据库表设计 代码实现之前首先是表设计&#xff0c; 六个基本步骤 1.需求分析 (分析用户需求,包括数据、功能和性能需求&#xff09; 2.概念结构设计(主要采用 E-R图) 3.逻辑结构设计 (将ER图转换成表,实现从E-R模型到关系模型转换&#xff09; 4.数据库物理设计 (为设计的…

深度学习的“前世今生”

1、“感知机”的诞生 20世纪50年代&#xff0c;人工智能派生出了这样两个学派&#xff0c;分别是“符号学派”及“连接学派”。前者的领军学者有Marvin Minsky及John McCarthy&#xff0c;后者则是由Frank Rosenblatt所领导。 符号学派的人相信对机器从头编程&#xff0c;一个…

Vue-5.编译器idea

关闭 IDEA 自动更新 IDEA无法搜索插件 填写idea下载插件的官方地址点击ok测试成功则ok https://plugins.jetbrains.com/idea 全局内存配置&#xff08;重启后生效&#xff09; 部署 Alibaba Cloud toolkit&#xff08;部署代码的利器&#xff09; Git&#xff08;需要安装gi…

人工智能原理(4)

目录 一、确定性推理 1、推理方式 2、控制策略 二、推理的逻辑基础 1、永真和可满足性 2、等价性和永真蕴含 3、置换与合一 三、自然演绎推理 四、归结演绎推理 1、子句型 2、鲁滨逊归结原理 3、归结策略 一、确定性推理 推理&#xff1a;就是按照某种策略从已有事…

微机原理与接口技术 学习笔记(二) 存储器

文章目录 一&#xff0c;存储器1.1 概述1.1.1 半导体存储器的分类按制造工艺&#xff1a; 易失性或挥发性存储器 / 不易失性或不挥发性存储器按制造工艺&#xff1a; 1.1.2 半导体存储器的性能指标1.1.3 半导体存储器的一般结构及组成 1.2 随机存取存储器 RAM1.2.1 静态RAM1.2.…

操作符和表达式求值

目录 1.运算符的优先级和结合性 1.1运算符的优先级 1.2结合性 2.操作符的使用最终带来的是一个表达式的值 2.1.隐式类型转换&#xff08;整型提升&#xff09; 2.1.1整形提升的例子 2.2算术转换 1.运算符的优先级和结合性 运算符是编程语言中的基本元素之一&#xff0c;主…

临床试验三原则-对照、重复、随机

临床试验必须遵循三个基本原则&#xff1a;对照、重复、随机。 一、对照原则和对照的设置 核心观点&#xff1a;有比较才有鉴别。 对照组和试验组同质可比。 三臂试验 安慰剂&#xff1a;试验组&#xff1a;阳性对照组1&#xff1a;n&#xff1a;m&#xff08;n≥m&#xff…

论文略读:城市道路场景下车辆编队运动规划与控制算法研究

1. 一些观点&#xff1a; &#xff08;1&#xff09;我曾经认为不能复现的论文都是垃圾。我现在看到能够量产的论文之后发现&#xff0c;论文的复现实属难得&#xff0c;即使给你代码&#xff0c;反复钻研&#xff0c;一个月之久才敢说略微看懂&#xff0c;所以论文的复现实在是…

使用 `tailwindcss-patch@2` 来提取你的类名吧

使用 tailwindcss-patch2 来提取你的类名吧 使用 tailwindcss-patch2 来提取你的类名吧 安装使用方式 命令行 Cli 开始提取吧 Nodejs API 的方式来使用 配置 初始化 What’s next? tailwindcss-patch 是一个 tailwindcss 生态的扩展项目。也是 tailwindcss-mangle 项目重要…

高等数学教材重难点题型总结(二)导数与微分

本章重点题目较少&#xff0c;除了*标题页没什么特别难的&#xff0c;本帖出于总结性的角度考虑并未囊概全部的*标&#xff0c;最后会出一期*标题的全部内容整理&#xff0c;在攻克重难点的基础上更上一层楼。 1.根据定义求某点处的导数值 2.通过定义证明导数 3.左右导数的相关…

QT使用QML实现地图绘制虚线

QML提供了MapPolyline用于在地图上绘制线段&#xff0c;该线段是实线&#xff0c;因此我使用Canvas自定义绘制的方式在地图上绘制线段&#xff0c;如图&#xff1a; 鼠标在地图上点击后&#xff0c;在点击位置添加图标 &#xff0c;当有多个图标被添加到地图上后&#xff0c;计…

openGauss学习笔记-40 openGauss 高级数据管理-锁

文章目录 openGauss学习笔记-40 openGauss 高级数据管理-锁40.1 语法格式40.2 参数说明40.3 示例 openGauss学习笔记-40 openGauss 高级数据管理-锁 如果需要保持数据库数据的一致性&#xff0c;可以使用LOCK TABLE来阻止其他用户修改表。 例如&#xff0c;一个应用需要保证表…

MTK Android非常用分辨率修改充电动画

非标准分辨率的屏,配置MTK Android的关机充电动画. 环境 芯片 MTK 系统 Android 服务器 ubuntu 屏幕分辨率356*400,不是常见的分辨率. 原始充电动画显示异常,画面扭曲. 方法 确定使用的图片 vendor/mediatek/proprietary/bootable/bootloader/lk/dev/logo 这个目录下…

05-基础入门-系统及数据库等

基础入门-系统及数据库等 一、操作系统层面1、识别操作系统常见方法2、简要两者区别及识别意义3、操作系统层面漏洞类型对应意义4、简要操作系统层面漏洞影响范围 二、数据库层面1、识别数据库类型常见方法2、数据库类型区别及识别意义3、数据库常见漏洞类型及攻击4、简要数据库…

【【STM32之GPIO】】

STM32之GPIO 学完了正点原子自带的视频课之后感觉仍然一知半解现在更新一下来自其他版本的STM32学习 GPIO 就是 General Purpose Input Output 中文名叫通用输入输出口 可配置8种输入输出模式 引脚电平 0V~3.3V 部分引脚可容忍5V 输出模式下可控制端口输出高低电平&#xff…

MongoDB增删改查操作

数据库操作&#xff1a; 在MongoDB中&#xff0c;文档集合存在数据库中。 要选择使用的数据库&#xff0c;请在mongo shell程序中发出 use <db> 语句 // 查看有哪些数据库 show dbs;// 如果数据库不存在&#xff0c;则创建并切换到该数据库&#xff0c;存在则直接切换到…

CS5263 DP转HDMI 4k@60Hz转接线方案,替代IT6563 PS176方案

集睿致远/ASL推出的CS5263是一款DP转HDMI 2.0音视频转换芯片&#xff0c;主要用于设计DP转HDMI2.0音视频转换器或者DP转HDMI 4K60Hz音视频转接线等产品种适用于需要视频协议转换的电缆适配器、电视接收器、监视器和其他应用。 CS5263参数 DisplayPort输入&#xff08;接收器&a…