ATF BL1 UFS初始化分析
- 1 ATF的下载链接
- 2 ATF BL1 UFS 初始化简易流程图
- 3 ATF BL1 ufs初始化简单过程分析
- 3.1 调用过程
- 3.2 hikey960_ufs_init
- 3.3 dw_ufs_init
- 3.3 ufs_init
以海思hikey960为例来介绍,简单介绍在ATF BL1阶段的初始化处理。
1 ATF的下载链接
https://github.com/ARM-software/arm-trusted-firmware
可以通过下面的命令来下载ATF的代码,或者通过打包下载的方式也可以。
git clone git@github.com:ARM-software/arm-trusted-firmware.git
2 ATF BL1 UFS 初始化简易流程图
3 ATF BL1 ufs初始化简单过程分析
3.1 调用过程
以以海思hikey960为例来介绍ATF BL1 ufs 初始化的调用关系
| -- bl1_main -------- bl1_main.c
| - bl1_platform_setup -------- plat/hisilicon/hikey960/hikey960_bl1_setup.c
| - hikey960_ufs_init -------- plat/hisilicon/hikey960/hikey960_bl1_setup.c
| - hikey960_ufs_reset -------- plat/hisilicon/hikey960/hikey960_bl1_setup.c
| - dw_ufs_init -------- drivers/synopsys/ufs/dw_ufs.c
| - ufs_init -------- drivers/synopsys/ufs/dw_ufs.c
3.2 hikey960_ufs_init
UFS_REG_BASE
表示UFS 配置空间的基地址HIKEY960_UFS_DESC_BASE
表示ufs 描述符的基地址HIKEY960_UFS_DESC_SIZE
表示ufs描述符的大小(ufs_params.flags & UFS_FLAGS_SKIPINIT) == 0
当前ufs驱动的flag如果是skipinit则先去做复位操作,对于hikey960来说是不会参与该处理流程的。dw_ufs_init(&ufs_params);
dw ufs的初始化处理
static void hikey960_ufs_init(void)
{
dw_ufs_params_t ufs_params;
memset(&ufs_params, 0, sizeof(ufs_params));
ufs_params.reg_base = UFS_REG_BASE;
ufs_params.desc_base = HIKEY960_UFS_DESC_BASE;
ufs_params.desc_size = HIKEY960_UFS_DESC_SIZE;
if ((ufs_params.flags & UFS_FLAGS_SKIPINIT) == 0)
hikey960_ufs_reset();
dw_ufs_init(&ufs_params);
}
3.3 dw_ufs_init
.phy_init
ufs phy初始化的处理.phy_set_pwr_mode
ufs phy 电源模式设置ufs_init(&dw_ufs_ops, &ufs_params);
dw ufs以dw_ufs_ops
作为初始化ops以及ufs_params
配置参数去做对应的dw ufs初始化操作。
static const ufs_ops_t dw_ufs_ops = {
.phy_init = dwufs_phy_init,
.phy_set_pwr_mode = dwufs_phy_set_pwr_mode,
};
int dw_ufs_init(dw_ufs_params_t *params)
{
ufs_params_t ufs_params;
memset(&ufs_params, 0, sizeof(ufs_params));
ufs_params.reg_base = params->reg_base;
ufs_params.desc_base = params->desc_base;
ufs_params.desc_size = params->desc_size;
ufs_params.flags = params->flags;
ufs_init(&dw_ufs_ops, &ufs_params);
return 0;
}
3.3 ufs_init
nutrs = (mmio_read_32(ufs_params.reg_base + CAP) & CAP_NUTRS_MASK) + 1;
读取CAP寄存器去获取UTP传输请求槽数量Number of UTP Transfer Request Slots (NUTRS)
。当前在BL1阶段采用的是Legacy Single Doorbell mode
。
Number of UTP Transfer Request Slots (NUTRS): For Legacy Single Doorbell mode, this indicates the number of slots provided by the UTP Transfer Request List. A minimum of 1 and maximum of 32 slots may be supported.
UTP传输请求槽数 (NUTRS): 对于传统单门铃模式,它表示UTP 传输请求列表提供的槽数量。可支持最少 1 个、最多 32 个插槽。
For MCQ mode, this field specifies how many active transfer tasks the Host HW controller is capable of managing in parallel. The minimum of 1 and maximum of 256 slots may be supported.
对于 MCQ 模式,该字段指定主机硬件控制器能够并行管理的活动传输任务数量。最少可支持 1 个插槽,最多可支持 256 个插槽。
ufshc_reset(ufs_params.reg_base);
ufs 复位操作ops->phy_init(&ufs_params);
ufs phy初始化,这个会调用在dw_ufs_init注册的ops的phy_init接口,即dwufs_phy_init
ufshc_link_startup(ufs_params.reg_base);
执行linkstartupufs_get_device_info(&card);
获取当前UFS设备的设备描述符ops->phy_set_pwr_mode(&ufs_params);
设置当前ufs的工作电源模式,会调用到dw_ufs_init注册的opsphy_set_pwr_mode接口,即dwufs_phy_set_pwr_mode
函数
int ufs_init(const ufs_ops_t *ops, ufs_params_t *params)
{
int result;
unsigned int data;
uic_cmd_t cmd;
struct ufs_dev_desc card = {0};
assert((params != NULL) &&
(params->reg_base != 0) &&
(params->desc_base != 0) &&
(params->desc_size >= UFS_DESC_SIZE));
memcpy(&ufs_params, params, sizeof(ufs_params_t));
/* 0 means 1 slot */
nutrs = (mmio_read_32(ufs_params.reg_base + CAP) & CAP_NUTRS_MASK) + 1;
if (nutrs > (ufs_params.desc_size / UFS_DESC_SIZE)) {
nutrs = ufs_params.desc_size / UFS_DESC_SIZE;
}
if (ufs_params.flags & UFS_FLAGS_SKIPINIT) {
mmio_write_32(ufs_params.reg_base + UTRLBA,
ufs_params.desc_base & UINT32_MAX);
mmio_write_32(ufs_params.reg_base + UTRLBAU,
(ufs_params.desc_base >> 32) & UINT32_MAX);
result = ufshc_dme_get(0x1571, 0, &data);
assert(result == 0);
result = ufshc_dme_get(0x41, 0, &data);
assert(result == 0);
if (data == 1) {
/* prepare to exit hibernate mode */
memset(&cmd, 0, sizeof(uic_cmd_t));
cmd.op = DME_HIBERNATE_EXIT;
result = ufshc_send_uic_cmd(ufs_params.reg_base,
&cmd);
assert(result == 0);
data = mmio_read_32(ufs_params.reg_base + UCMDARG2);
assert(data == 0);
do {
data = mmio_read_32(ufs_params.reg_base + IS);
} while ((data & UFS_INT_UHXS) == 0);
mmio_write_32(ufs_params.reg_base + IS, UFS_INT_UHXS);
data = mmio_read_32(ufs_params.reg_base + HCS);
assert((data & HCS_UPMCRS_MASK) == HCS_PWR_LOCAL);
}
result = ufshc_dme_get(0x1568, 0, &data);
assert(result == 0);
assert((data > 0) && (data <= 3));
} else {
assert((ops != NULL) && (ops->phy_init != NULL) &&
(ops->phy_set_pwr_mode != NULL));
result = ufshc_reset(ufs_params.reg_base);
assert(result == 0);
ops->phy_init(&ufs_params);
result = ufshc_link_startup(ufs_params.reg_base);
assert(result == 0);
/* enable all interrupts */
data = UFS_INT_UCCS | UFS_INT_UHES | UFS_INT_UHXS | UFS_INT_UPMS;
data |= UFS_INT_UTRCS | UFS_INT_ERR;
mmio_write_32(ufs_params.reg_base + IE, data);
ufs_enum();
ufs_get_device_info(&card);
if (card.wmanufacturerid == UFS_VENDOR_SKHYNIX) {
ufs_params.flags |= UFS_FLAGS_VENDOR_SKHYNIX;
}
ops->phy_set_pwr_mode(&ufs_params);
}
(void)result;
return 0;
}