计算机竞赛 python 机器视觉 车牌识别 - opencv 深度学习 机器学习

news2024/11/26 0:25:59

1 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 基于python 机器视觉 的车牌识别系统

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:3分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 课题背景

车牌识别其实是个经典的机器视觉任务了,通过图像处理技术检测、定位、识别车牌上的字符,实现计算机对车牌的智能管理功能。如今在小区停车场、高速公路出入口、监控场所、自动收费站等地都有车牌识别系统的存在,车牌识别的研究也已逐步成熟。尽管该技术随处可见了,但其实在精度和识别速度上还需要进一步提升,自己动手实现一个车牌识别系统有利于学习和理解图像处理的先进技术。

本文详细介绍基于深度学习的中文车牌识别与管理系统,在介绍算法原理的同时,给出Python的实现代码以及PyQt的简单UI界面。在界面中可以选择需要识别的车牌视频、图片文件等。

2 效果演示

首先还是用动图先展示一下效果,系统主要实现的功能是对图片、视频中的车牌进行检测和识别,演示效果如下。

2.1 图片检测识别

在这里插入图片描述

2.2视频检测识别

在这里插入图片描述

3 车牌检测与识别

目前,智能交通系统中集成运用计算机视觉、物联网、人工智能等多种技术成为未来发展方向。其中,车牌识别(License Plate Recognition,
LPR)技术作为一项重要技术,从获取的图像中提取目标车辆的车牌信息,成为完善智能交通管理运行的基础。

由于本文介绍的是中文车牌,所以可以简单了解一下国内汽车拍照的特点:字符数为七个,包括汉字、字母和数字。车牌颜色组合中,其中最常见的组合为普通小型汽车蓝底白字和新能源汽车的渐变绿底黑字。

在这里插入图片描述

总结来说,车牌是一个有特点的图像区域,几种特征可以综合起来确定车牌定位,所以之前就有利用车牌与周围环境的差异的算法。目前常见的车牌定位算法有以下 4
种:基于颜色、纹理、边缘信息的车牌定位算法和基于人工神经网络的车牌定位算法。

如下图所示,常规的步骤包括图像采集、预处理、车牌定位、字符分割、字符识别、输出结果。深度学习技术成熟之后,端到端的网络模型使得这一过程变得简单起来。从思想上来说,基于深度学习的车牌识别实现思路主要包括两个部分:(1)车牌检测定位;(2)车牌字符识别。

在这里插入图片描述

其中,车牌的检测定位本质是一个特定的目标检测任务,即通过算法框选出属于车牌的位置坐标,以便将其与背景区分开来。可以认为检测出的车牌位置才是我们的感兴趣区域。好用的方法如Cascade
LBP,它是一种机器学习的方法,可以利用OpenCV训练级联分类器,依赖CPU进行计算,级联分类器的方法对于常用场景效果比较好,检测速度较快,曾经一度比较流行,但准确率一般。基于深度学习的检测算法有Mobilene-
SSD、YOLO-v5等,利用大批量的标注数据进行训练.

当ROI被检测出来,如何对这一区域中的字符进行识别,这就涉及到采取的处理方式。第一种处理方式,首先利用一系列字符分割的算法将车牌中的字符逐个分开,然后基于深度学习进行字符分类,得到识别结果;第二种,区别于第一种先分割再分类的两步走方式,利用端到端的CTC(
Connectionist Temporal Classification)网络直接进行识别。

这里我们使用网上开源的HyperLPR中文车牌识别框架,首先导入OpenCV和hyperlpr,读取一张车牌图片调用架构中的车牌识别方法获得结果,以下代码来自官方的示例:

    #导入包
    from hyperlpr import *
    #导入OpenCV库
    import cv2
    #读入图片
    image = cv2.imread("demo.jpg")
    #识别结果
    print(HyperLPR_plate_recognition(image))

以上代码运行结果如下,可以看出该方法识别了车牌的车牌字符、置信度值、车牌位置坐标、图片尺寸等结果。

在这里插入图片描述

这样的结果还不够直观,我们写一个函数将车牌的识别结果标注在图片上,首先导入相关依赖包,其代码如下:

    # 导入包
    from hyperlpr import *
    # 导入OpenCV库
    import cv2 as cv
    from PIL import Image, ImageDraw, ImageFont
    import numpy as np

新建一个函数drawRectBox,将图像数据、识别结果、字体等参数传入,函数内部利用OpenCV和PIL库添加标注框和识别结果的字符,其代码如下:

    def drawRectBox(image, rect, addText, fontC):
        cv.rectangle(image, (int(round(rect[0])), int(round(rect[1]))),
                     (int(round(rect[2]) + 8), int(round(rect[3]) + 8)),
                     (0, 0, 255), 2)
        cv.rectangle(image, (int(rect[0] - 1), int(rect[1]) - 16), (int(rect[0] + 75), int(rect[1])), (0, 0, 255), -1, cv.LINE_AA)
        img = Image.fromarray(image)
        draw = ImageDraw.Draw(img)
        draw.text((int(rect[0] + 1), int(rect[1] - 16)), addText, (255, 255, 255), font=fontC)
        imagex = np.array(img)
        return imagex

我们首先读取图片文件,利用前面的HyperLPR_plate_recognition方法识别出车牌结果,调用以上函数获得带标注框的图片,利用OpenCV的imshow方法显示结果图片,其代码如下:

    image = cv.imread('test3.jpeg')  # 读取选择的图片
    res_all = HyperLPR_plate_recognition(image)
    fontC = ImageFont.truetype("./platech.ttf", 14, 0)
    res, confi, axes = res_all[0]
    image = drawRectBox(image, axes, res, fontC)
    cv.imshow('Stream', image)
    c = cv.waitKey(0) & 0xff

此时运行以上代码可以得到如下结果:

在这里插入图片描述

同理,识别视频中的车牌也可以做类似的操作,不过我们需要先对视频文件进行逐帧读取,然后采用以上的方式在图片中标识出车牌并显示。

这部分代码如下:

    
capture = cv.VideoCapture("./车牌检测.mp4")  # 读取视频文件
fontC = ImageFont.truetype("./platech.ttf", 14, 0)  # 字体,用于标注图片
​    

i = 1
while (True):
    ref, frame = capture.read()
    if ref:
        i = i + 1
        if i % 5 == 0:
            i = 0
            res_all = HyperLPR_plate_recognition(frame)  # 识别车牌
            if len(res_all) > 0:
                res, confi, axes = res_all[0]  # 获取结果
                frame = drawRectBox(frame, axes, res, fontC)
            cv.imshow("num", frame)  # 显示画面if cv.waitKey(1) & 0xFF == ord('q'):break  # 退出else:break

以上代码每5帧识别一次视频中的车牌,将车牌的结果标注在画面中进行实时显示,运行结果的截图如下所示:
在这里插入图片描述

车牌的识别部分代码演示完毕,对此我们完成了图片和视频的识别,然而这些还是简单的脚本呈现。为了方便更换图片、视频以及管理车牌,还需要设计文件选择功能以及系统的UI界面。这部分代码如下:

    class Ui_MainWindow(object):
        def setupUi(self, MainWindow):
            MainWindow.setObjectName("MainWindow")
            MainWindow.resize(800, 600)
            self.centralwidget = QtWidgets.QWidget(MainWindow)
            self.centralwidget.setObjectName("centralwidget")
            self.openimage = QtWidgets.QPushButton(self.centralwidget)
            self.openimage.setGeometry(QtCore.QRect(20, 40, 91, 51))
            self.openimage.setObjectName("openimage")
            self.showlabel = QtWidgets.QLabel(self.centralwidget)
            self.showlabel.setGeometry(QtCore.QRect(110, 10, 471, 441))
            self.showlabel.setObjectName("showlabel")
            self.LPRdetect = QtWidgets.QPushButton(self.centralwidget)
            self.LPRdetect.setGeometry(QtCore.QRect(20, 150, 81, 51))
            self.LPRdetect.setObjectName("LPRdetect")
            self.LPR_Rec = QtWidgets.QPushButton(self.centralwidget)
            self.LPR_Rec.setGeometry(QtCore.QRect(20, 292, 75, 31))
            self.LPR_Rec.setObjectName("LPR_Rec")
            self.lineEdit_result = QtWidgets.QLineEdit(self.centralwidget)
            self.lineEdit_result.setGeometry(QtCore.QRect(20, 400, 101, 41))
            self.lineEdit_result.setObjectName("lineEdit_result")
            self.openvideo = QtWidgets.QPushButton(self.centralwidget)
            self.openvideo.setGeometry(QtCore.QRect(20, 360, 75, 23))
            self.openvideo.setObjectName("openvideo")
            MainWindow.setCentralWidget(self.centralwidget)
            self.menubar = QtWidgets.QMenuBar(MainWindow)
            self.menubar.setGeometry(QtCore.QRect(0, 0, 800, 23))
            self.menubar.setObjectName("menubar")
            MainWindow.setMenuBar(self.menubar)
            self.statusbar = QtWidgets.QStatusBar(MainWindow)
            self.statusbar.setObjectName("statusbar")
            MainWindow.setStatusBar(self.statusbar)
            self.retranslateUi(MainWindow)
        QtCore.QMetaObject.connectSlotsByName(MainWindow)

    def retranslateUi(self, MainWindow):
        _translate = QtCore.QCoreApplication.translate
        MainWindow.setWindowTitle(_translate("MainWindow", "MainWindow"))
        self.openimage.setText(_translate("MainWindow", "打开图片"))
        self.showlabel.setText(_translate("MainWindow", "TextLabel"))
        self.LPRdetect.setText(_translate("MainWindow", "车牌检测"))
        self.LPR_Rec.setText(_translate("MainWindow", "车牌识别"))
        self.openvideo.setText(_translate("MainWindow", "PushButton"))

4 HyperLPR库

4.1 简介

HyperLPR是一个使用深度学习针对对中文车牌识别的实现,与较为流行的开源的EasyPR相比,它的检测速度和鲁棒性和多场景的适应性都要好于目前开源的EasyPR,HyperLPR可以识别多种中文车牌包括白牌,新能源车牌,使馆车牌,教练车牌,武警车牌等。

4.2 特点

  • 基于端到端sequence模型,无需进行字符分割,识别速度更快。
  • 速度快 720p ,单核 Intel 2.2G CPU (macbook Pro 2015)平均识别时间<=90ms
  • 识别率高,仅仅针对车牌ROI在EasyPR数据集上,0-error达到 95.2%, 1-error识别率达到 97.4% (指在定位成功后的车牌识别率)
  • 轻量总代码量不超1k行。
  • 带有Android实现,其Android Demo可解决一些在一些普通业务场景(如执法记录仪)下的车牌识别任务。
  • 支持多种车牌的识别,详情见如下

4.3 HyperLPR的检测流程

  • 使用opencv的HAAR Cascade检测车牌大致位置
  • Extend检测到的大致位置的矩形区域
  • 使用类似于MSER的方式的多级二值化和RANSAC拟合车牌的上下边界
  • 使用CNN Regression回归车牌左右边界
  • 使用基于纹理场的算法进行车牌校正倾斜
  • 使用CNN滑动窗切割字符
  • 使用CNN识别字符

4.4 安装


​ pip install hyperlpr

4.5 Python 依赖

  • Keras (>2.0.0)

  • Theano(>0.9) or Tensorflow(>1.1.x)

  • Numpy (>1.10)

  • Scipy (0.19.1)

  • OpenCV(>3.0)

  • Scikit-image (0.13.0)

  • PIL

  • 使用CNN识别字符

5 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/878098.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Docker自动化部署安装(十)之安装SonarQube

这里选择的是&#xff1a; sonarqube:9.1.0-community (推荐使用) postgres:9.6.23 数据库(sonarqube7.9及以后便不再支持mysql&#xff0c;版本太低的话里面的一些插件会下载不成功的) 1、docker-sonarqube.yml文件 version: 3 services:sonarqube:container_name: sonar…

打造专属企业展示小程序

在当今的数字化时代&#xff0c;企业展示小程序已经成为了推广企业形象和吸引客户的重要工具。而如何打造一个专属的企业展示小程序呢&#xff1f;下面将带您一步步操作&#xff0c;通过乔拓云网来实现这一目标。 首先&#xff0c;您需要注册登录乔拓云网并进入操作后台。在乔拓…

如何修复损坏的DOC和DOCX格式Word文件?

我们日常办公中&#xff0c;经常用到Word文档。但是有时会遇到word文件损坏、无法打开的情况。这时该怎么办&#xff1f;接着往下看&#xff0c;小编在这里就给大家带来最简单的Word文件修复方法&#xff01; 很多时候DOC和DOCX Word文件会无缘无故的损坏无法打开&#xff0c;一…

String、StringBuffer、StringBuilder三者的异同?

String字符串 不可变的字符序列在 jdk1.8&#xff0c;我们底层用 char [ ] 存储在 jdk 17&#xff0c;我们底层用 byte [ ] 存储 StringBuffer字符串缓冲区类 可变的字符序列&#xff0c;线程安全的&#xff08;synchronized&#xff09;&#xff0c;效率低在 jdk1.8&#xf…

中大型纯电动旗舰轿车银河E8申报成功,定位“旗舰”,可年内交付

根据工信部的公告&#xff0c;吉利旗下的银河新能源品牌近日成功完成中大型纯电轿车银河 E8的申报。这款令人期待的电动轿车在外观和内饰方面都备受关注。在之前的报道中&#xff0c;我们得知银河 E8拥有时尚、动感的外观设计&#xff0c;线条流畅&#xff0c;给人一种科技感十…

关于vue,记录一次修饰符.stop和.once的使用,以及猜想。

内置指令 | Vue.js 在vue的api里&#xff0c;关于v-on有stop和once两个事件标签。 .stop - 调用 event.stopPropagation()。.once - 最多触发一次处理函数。 原有主要代码和页面效果 &#xff08;无stop和once&#xff09;: ...<div class"div" click"di…

编写时源码优化插件试验品

我又来倒垃圾啦 自己垃圾桶里的这个&#xff1a;egg language server on VSCode | Framist’s Little House 用蛋消灭魔鬼&#xff01;编写时源码优化插件 egg-language-server &#x1f9ea; in developing Source Code Optimization Tools at Writing-time 特性 demo | 点击跳…

Revit SDK: FindColumns 找到和墙相交的柱子

前言 本文的主要内容是基于 ReferenceIntersector 的一个应用。ReferenceIntersector 的主要作用是找到一条与给定射线相交的各个元素。 内容 ReferenceIntersector namespace Autodesk.Revit.DB {public class ReferenceIntersector : IDisposable{public ReferenceInters…

Playwright快速上手-1

前言 随着近年来对UI自动化测试的要求越来越高&#xff0c;,功能强大的测试框架也不断的涌现。本系列主讲的Playwright作为一款新兴的端到端测试框架,凭借其独特优势,正在逐渐成为测试工程师的热门选择。 本系列文章将着重通过示例讲解 Playwright python开发环境的搭建 …

【瑞芯微RK3588】【部署yolov5】学习资料总结

各类教程 1.官网&#xff1a;瑞芯微RK3588板子NPU的使用&#xff1b; 2. 【实测有用】在PC虚拟机上转换模型&#xff0c;再下载到RK3588板子上部署YOLOv5&#xff1b; 3. 在服务器上转换模型&#xff0c;再下载到RK3588板子上部署YOLOv5&#xff1b; 4. github上的各类资料…

【设计模式】2.策略模式

前言 代码例子是来大话设计模式&#xff0c;本文主要是根据个人的理解&#xff0c;对书中的内容做学习笔记。如果个人理解的有问题&#xff0c;请各位大佬指正&#x1f64f;。 基础遗忘了可以复习一下&#xff1a; 面向对象Java基础 简单了解UML类图 1、业务背景 商场收银软…

双色球彩票系统---(java实现)

双色球彩票系统&#xff1a;需求&#xff1a;投注号码由6个红色号码和1个蓝色球号码组成。红色球号码从1-33中选择&#xff0c;蓝色球号码从1-16当中选择 * 红 蓝 * 一等奖 6 1 * 二等奖 6 0 * 三等奖 5 1 * 四等奖 5 0 * 4 1 * 五等奖 4 0 * …

NPCon:AI模型技术与应用峰会北京站 (参会感受)

8月12日&#xff0c;我有幸参加了在北京皇家格兰云天大酒店举行的“AI模型技术与应用峰会”。 这次会议邀请了很多技术大咖&#xff0c;他们围绕&#xff1a; 六大论点 大模型涌现&#xff0c;如何部署训练架构与算力芯片 LLM 应用技术栈与Agent全景解析 视觉GPU推理服务部署 …

ubuntu部署haproxy

HAProxy是可提供高可用性、负载均衡以及基于TCP和HTTP应用的代理. 1、更新系统报 通过在终端中运行以下命令,确保所有系统包都是最新的 sudo apt updatesudo apt upgrade 2、安装Haproxy sudo apt install haproxy 设置开机自动启动haproxy服务 sudo systemctl enable h…

.gitignore匹配规则

目录 1.直接一个名称2.斜杠 /3.符号 *4.问号 &#xff1f;5.感叹号 &#xff01;6.gitkeep 借鉴抖音账号&#xff1a; 渡一前端提薪课 1.直接一个名称 会忽略目录下的所有该名称文件和文件夹&#xff0c;无论嵌套多深。 2.斜杠 / 1.斜杠在开头(/dist)&#xff1a;忽略和.gitig…

开发规范(一):Mysql篇

1. 流程 数据库表结构的修改需要相关人员和Leader一起评审&#xff0c;保证符合涉及规范。 不允许使用root账号&#xff0c;所有开发和测试应当分配指定账号&#xff0c;并授予最小数据库权限 2. 数据库与表规范 表命名规范 常规表表名以 t_开头&#xff0c;t 代表 table 的意思…

Kafka第三课

Flume 由三部分 Source Channel Sink 可以通过配置拦截器和Channel选择器,来实现对数据的分流, 可以通过对channel的2个存储容量的的设置,来实现对流速的控制 Kafka 同样由三大部分组成 生产者 服务器 消费者 生产者负责发送数据给服务器 服务器存储数据 消费者通过从服务器取…

Redis数据结构——压缩列表ziplist

定义 压缩列表ziplist是Redis中列表和哈希键的底层实现方式之一。 当一个列表只包含少量列表项&#xff0c;并且每个列表项要么是小整数值&#xff0c;要么是较短的字符串时&#xff0c;那么Redis就会使用压缩列表来作为列表的底层实现。 另外&#xff0c;当一个哈希表中只包含…

FPGA + WS2812采灯控制

文章目录 一、WS2812C-2020-V11、产品概述2、引出端排列及功能3、数据传输时间4、数据传输方法 二、使用WS2812C显示图片1、静态显示2、动态显示 一、WS2812C-2020-V1 1、产品概述 WS2812C-2020-V1是一个集控制电路与发光电路于一体的智能外控LED光源&#xff1b;其外型采用最…

Docker中Tomcat部署步骤

第一次访问没有东西。