dialogbot:开箱即用的对话机器人解决方案,涵盖问答型对话、任务型对话和聊天型对话等多种场景,为您提供全方位的对话交互体验。

news2024/11/24 2:34:44

dialogbot:开箱即用的对话机器人解决方案,涵盖问答型对话、任务型对话和聊天型对话等多种场景,支持网络检索问答、领域知识问答、任务引导问答和闲聊问答,为您提供全方位的对话交互体验。

人机对话系统一直是AI的重要方向,图灵测试以对话检测机器是否拥有高度的智能。如何构建人机对话系统或者对话机器人呢?

  • 对话系统经过三代的演变:

    1. 规则对话系统:垂直领域可以利用模板匹配方法的匹配问句和相应的答案。优点是内部逻辑透明,易于分析调试,缺点是高度依赖专家干预,
      缺少灵活性和可可拓展性。
    2. 统计对话系统:基于部分可见马尔科夫决策过程的统计对话系统,先对问句进行贝叶斯推断,维护每轮对话状态,再跟进对话状态进行对话策略的选择,
      从而生成自然语言回复。基本形成现代的对话系统框架,它避免了对专家的高度依赖,缺点是模型难以维护,可拓展性比较受限。
    3. 深度对话系统:基本延续了统计对话系统的框架,但各个模型采用深度网络模型。利用了深度模型强大的表征能力,语言分类和生成能力大幅提高,
      缺点是需要大量标注数据才能有效训练模型。
  • 对话系统分为三类:

    • 问答型对话:多是一问一答,用户提问,系统通过对问题解析和查找知识库返回正确答案,如搜索。
    • 任务型对话:指由任务驱动的多轮对话,机器需要通过理解、主动询问、澄清等方式确定用户目标,然后查找知识库返回结果,完成用户需求。
      如:机器人售电影票。
    • 聊天型对话:目标是产生有趣且富有信息量的自然答复使人机对话持续下去,如小度音响。

1.问答型对话(Search Dialogue Bot)

1.1 本地检索问答

计算用户问句与问答库中问句的相似度,选择最相似的问句,给出其对应的答复。

句子相似度计算包括以下方法:

  • TFIDF
  • BM25
  • OneHot
  • Query Vector

1.2 网络检索问答

对百度、Bing的搜索结果摘要进行答案的检索

  • 百度搜索,包括百度知识图谱、百度诗词、百度万年历、百度计算器、百度知道
  • 微软Bing搜索,包括bing知识图谱、bing网典

1.3 任务型对话(Task Oriented Dialogue Bot)

  • End to End Memory Networks(memn2n)
  • BABi dataset

1.4 聊天型对话(Generative Dialogue Bot)

  • GPT2 Model
  • Sequence To Sequence Model(seq2seq)
  • Taobao dataset

2.Demo展示

Official Demo: https://www.mulanai.com/product/dialogbot/

The project is based on transformers 4.4.2+, torch 1.6.0+ and Python 3.6+.
Then, simply do:

pip3 install torch # conda install pytorch
pip3 install -U dialogbot

or

pip3 install torch # conda install pytorch
git clone https://github.com/shibing624/dialogbot.git
cd dialogbot
python3 setup.py install

3.应用场景展示

3.1 问答型对话(Search Bot)

example: examples/bot_demo.py

from dialogbot import Bot

bot = Bot()
response = bot.answer('姚明多高呀?')
print(response)

output:

query: "姚明多高呀?"
answer: "226cm"

3.2 任务型对话(Task Bot)

example: examples/taskbot_demo.py

3.3 聊天型对话(Generative Bot)

3.3.1 GPT2模型使用

基于GPT2生成模型训练的聊天型对话模型。

模型已经 release 到huggingface models:shibing624/gpt2-dialogbot-base-chinese

example: examples/genbot_demo.py

from dialogbot import GPTBot
bot = GPTBot()
r = bot.answer('亲 你吃了吗?', use_history=False)
print('gpt2', r)

output:

query: "亲 吃了吗?"
answer: "吃了"

3.3.2 GPT2模型fine-tune

  • 数据预处理
    在项目根目录下创建data文件夹,将原始训练语料命名为train.txt,存放在该目录下。train.txt的格式如下,每段闲聊之间间隔一行,格式如下:
真想找你一起去看电影
突然很想你
我也很想你

想看你的美照
亲我一口就给你看
我亲两口
讨厌人家拿小拳拳捶你胸口

今天好点了吗?
一天比一天严重
吃药不管用,去打一针。别拖着

运行preprocess.py,对data/train.txt对话语料进行tokenize,然后进行序列化保存到data/train.pkl。train.pkl中序列化的对象的类型为List[List],记录对话列表中,每个对话包含的token。

cd dialogbot/gpt/
python preprocess.py --train_path data/train.txt --save_path data/train.pkl
  • 训练模型
    运行train.py,使用预处理后的数据,对模型进行自回归训练,模型保存在根目录下的model文件夹中。

在训练时,可以通过指定patience参数进行early stop。当patience=n时,若连续n个epoch,模型在验证集上的loss均没有下降,则进行early stop,停止训练。当patience=0时,不进行early stop。

代码中默认关闭了early stop,因为在实践中,early stop得到的模型的生成效果不一定会更好。

python train.py --epochs 40 --batch_size 8 --device 0,1 --train_path data/train.pkl

更多的训练参数介绍,可直接看train.py中的set_args()函数中的参数说明

3.3.3 预测模型(人机交互)

运行interact.py,使用训练好的模型,进行人机交互,输入q结束对话之后,聊天记录将保存到sample.txt文件中。

python interact.py --no_cuda --model_dir path_to_your_model

执行interact.py时,可以尝试通过调整topk、topp、repetition_penalty、max_history_len等参数,调整生成的效果。更多的参数介绍,可直接看interact.py的set_args()函数中的参数说明
如果要使用GPU进行生成,则不要调用–no_cuda参数,并且通过–device gpu_id来指定使用哪块GPU。

  • 问答示例
  • sample1
  user :在干嘛
chatbot:睡觉
  user :这么早就睡觉啦
chatbot:嗯啊你也早点睡啊
  user :我再玩一会儿手机
chatbot:早点休息晚安
  user :拜拜啦
chatbot:晚安晚安
  user :多喝热水
chatbot:哈哈哈
  user :多喝热水
chatbot:好的咯
  • sample2
  user :在吗
chatbot:在
  user :我不开心
chatbot:怎么啦
  user :最近好累啊
chatbot:是挺累的
  user :作业好多啊
chatbot:还好还好
  user :我觉得我快要挂科了
chatbot:我也是啊,但是我觉得我快熬出头了
  user :不说了,我还有好多作业没写
chatbot:我也是啊好多啊
  user :那先这样,下次再聊,再见了
chatbot:好哒

4.数据集

  • 闲聊语料分享
    |中文闲聊语料 | 数据集地址 |语料描述|
    |---------|--------|--------|
    |常见中文闲聊|chinese_chatbot_corpus|包含小黄鸡语料、豆瓣语料、电视剧对白语料、贴吧论坛回帖语料、微博语料、PTT八卦语料、青云语料等|
    |50w中文闲聊语料 | 百度网盘【提取码:4g5e】 或 GoogleDrive |包含50w个多轮对话的原始语料、预处理数据|
    |100w中文闲聊语料 | 百度网盘【提取码:s908】 或 GoogleDrive|包含100w个多轮对话的原始语料、预处理数据|

中文闲聊语料的内容样例如下:

谢谢你所做的一切
你开心就好
开心
嗯因为你的心里只有学习
某某某,还有你
这个某某某用的好

你们宿舍都是这么厉害的人吗
眼睛特别搞笑这土也不好捏但就是觉得挺可爱
特别可爱啊

今天好点了吗?
一天比一天严重
吃药不管用,去打一针。别拖着
  • 模型分享
模型共享地址模型描述
model_epoch40_50wshibing624/gpt2-dialogbot-base-chinese 或 百度网盘(提取码:taqh) 或 GoogleDrive使用50w多轮对话语料训练了40个epoch,loss降到2.0左右。
  • Reference
  • Wen T H, Vandyke D, Mrksic N, et al. A Network-based End-to-End Trainable Task-oriented Dialogue System[J]. 2016.
  • How NOT To Evaluate Your Dialogue System: An Empirical Study of Unsupervised Evaluation Metrics for Dialogue Response Generation
  • A. Bordes, Y. Boureau, J. Weston. Learning End-to-End Goal-Oriented Dialog 2016
  • Zhao T, Eskenazi M. Towards End-to-End Learning for Dialog State Tracking and Management using Deep Reinforcement Learning [J]. arXiv preprint arXiv:1606.02560, 2016.
  • Kulkarni T D, Narasimhan K R, Saeedi A, et al. Hierarchical deep reinforcement learning: Integrating temporal abstraction and intrinsic motivation [J]. arXiv preprint arXiv:1604.06057, 2016.
  • BBQ-Networks: Efficient Exploration in Deep Reinforcement Learning for Task-Oriented Dialogue Systems
  • Deep Reinforcement Learning with Double Q-Learning
  • Deep Attention Recurrent Q-Network
  • SimpleDS: A Simple Deep Reinforcement Learning Dialogue System
  • Deep Reinforcement Learning with a Natural Language Action Space
  • Integrating User and Agent Models: A Deep Task-Oriented Dialogue System
  • The Curious Case of Neural Text Degeneration
  • DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation
  • vyraun/chatbot-MemN2N-tensorflow
  • huggingface/transformers
  • Morizeyao/GPT2-Chinese
  • yangjianxin1/GPT2-chitchat

参考链接:https://github.com/shibing624/dialogbot

如果github进入不了也可进入 https://download.csdn.net/download/sinat_39620217/88205596 免费下载相关资料

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/873832.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

二叉搜索树K和KV结构模拟

一 什么是二叉搜索树 这个的结构特性非常重要,是后面函数实现的结构基础,二叉搜索树的特性是每个根节点都比自己的左树任一节点大,比自己的右树任一节点小。 例如这个图, 41是根节点,要比左树大,比右树小&…

数据结构-队列的实现(C语言版)

前言 队列是一种特殊的线性表,它只允许在一端对数据进行插入操作,在另一端对数据进行删除操作的特殊线性表,队列具有先进先出的(FIFO)的 特性,进行插入操作的一端称为队尾,进行删除操作的一端称…

关于Android Studio Http Proxy设置

对敌人最大的蔑视就是沉默。--鹿丸 我们使用Android Studio 开始构建的时候会有卡顿的情况,甚至死机,也就是所谓的【android studio】构建卡住问题,如果依赖库类都是国内的,检查是否开启了代理 这个地方选择下面的自动代理 国内…

Redis_事务操作

13. redis事务操作 13.1事务简介 原子性(Atomicity) 一致性(Consistency) 隔离性(isolation) 持久性(durabiliby) ACID 13.2 Redis事务 提供了multi、exec命令来完成 第一步,客户端使用multi命令显式地开启事务第二步,客户端把事务中要执行的指令发…

WebRTC音视频通话-实现GPUImage视频美颜滤镜效果iOS

WebRTC音视频通话-实现GPUImage视频美颜滤镜效果 在WebRTC音视频通话的GPUImage美颜效果图如下 可以看下 之前搭建ossrs服务,可以查看:https://blog.csdn.net/gloryFlow/article/details/132257196 之前实现iOS端调用ossrs音视频通话,可以查…

KNN分类器、神经网络原理基础与代码实现

急切学习 两步:(1)归纳 (2)演绎 例如:贝叶斯分类器、决策树分类等等。 惰性学习 将训练数据建模过程推迟到需要对样本分类时(直观理解:死记硬背,记住所有的训练数据&…

Springboot集成ip2region离线IP地名映射-修订版

title: Springboot集成ip2region离线IP地名映射 date: 2020-12-16 11:15:34 categories: springboot description: Springboot集成ip2region离线IP地名映射 1. 背景2. 集成 2.1. 步骤2.2. 样例2.3. 响应实例DataBlock2.4. 响应实例RegionAddress 3. 打开浏览器4. 源码地址&…

HTML表单标签大全并附有详细代码+案例

个人名片: 🐼作者简介:一名大二在校生 🐻‍❄️个人主页:落798. 🐼个人WeChat:落798. 🕊️系列专栏:零基础学java ----- 重识c语言 ---- 计算机网络—【Spring技术内幕】…

YOLOv8目标检测算法

YOLOv8目标检测算法相较于前几代YOLO系列算法具有如下的几点优势: 更友好的安装/运行方式速度更快、准确率更高新的backbone,将YOLOv5中的C3更换为C2FYOLO系列第一次尝试使用anchor-free新的损失函数 YOLOv8简介 YOLOv8 是 Ultralytics 公司继 YOLOv5…

Android学习之路(2) 设置视图

一、设置视图宽高 ​ 在Android开发中,可以使用LayoutParams类来设置视图(View)的宽度和高度。LayoutParams是一个用于布局的参数类,用于指定视图在父容器中的位置和大小。 ​ 下面是设置视图宽度和高度的示例代码: …

【算法——双指针】LeetCode 283 移动零

题目描述: 思路: (双指针) O(n)O(n)O(n) 给定一个数组 nums,要求我们将所有的 0 移动到数组的末尾,同时保持非零元素的相对顺序。 如图所示,数组nums [0,1,0,3,12],移动完成后变成nums [1,3,12,0,0] &am…

【探索SpringCloud】服务发现-Nacos使用

前言 在聊服务注册中心时,便提到了Nacos。这次便来认识一下。当然,这自然没有官方介绍那般详尽,权当是学习了解Nacos原理的一个过程吧。 Nacos简介 Nacos,全名:dynamic Naming And Configuration Service. 而这个名…

静态网页和动态网页区别

1,静态网页和动态网页有何区别 1) 更新和维护 静态网页内容一经发布到网站服务器上,无论是否有用户访问,这些网页内容都是保存在网站服务器上的。如果要修改网页的内容,就必须修改其源文件,然后重新上传到服务器上。…

SpringBoot框架

一、SpringBoot概述 1. 简介 springboot是spring家族中的一个全新框架,用来简化spring程序的创建和开发过程。在以往我们通过SpringMVCSpringMybatis框架进行开发的时候,我们需要配置web.xml,spring配置,mybatis配置,…

【算法训练营】队列合集(2) 2073. 买票需要的时间 || 面试题 03.04. 化栈为队 ||

📍前言 本篇将学习queue的OJ题,每一题的标题都是超链接哦,我会将queue的基础知识放到最后供你参考~ 🕺作者: 主页 我的专栏C语言从0到1探秘C数据结构从0到1探秘Linux菜鸟刷题集 😘欢迎关注:&am…

【LVS-NAT配置】

配置 node1:128(客户端) node2:135(调度器) RS: node3:130 node4:132 node2添加网络适配器(仅主机模式) [rootnode2 ~]# nmtui[rootnode2 ~]#…

棒球在国际上的流行·棒球1号位

棒球在国际上的流行 1. 棒球的起源与历史 棒球的起源源于美国。19世纪中叶,由于美国领土的扩张,当时的美国殖民地的印第安人将棒球类游戏,带到了当时的弗吉尼亚州的奥克兰。后来,棒球运动流传到了加利福尼亚州的圣迭戈。早期的棒…

Pyqt5使QTextEdit或QLabel等框框背景透明

设置:textEdit->setStyleSheet(“background-color: rgb(255, 255, 255, 60);”);

登录验证两种方案:token和cookie以及对比

cookie HTTP无状态,每次请求都要携带cookie,以帮助识别用户身份; 服务端也可以向客户端set-cookie,cookie大小限制为4kb; cookie默认有跨域限制,不跨域共享和传递,例如: 现代浏览…

7.4.tensorRT高级(2)-使用RAII接口模式对代码进行有效封装

目录 前言1. RAII接口模式2. 问答环节总结 前言 杜老师推出的 tensorRT从零起步高性能部署 课程,之前有看过一遍,但是没有做笔记,很多东西也忘了。这次重新撸一遍,顺便记记笔记。 本次课程学习 tensorRT 高级-使用 RAII 接口模式对…