迪锐克斯拉算法
简单来说就是在有向图中,给定一个图中具体的出发点,从这个点出发能够到达的所有的点,每个点的最短距离是多少。到不了的点,距离则是正无穷。有向,无负权重,可以有环。
所以说,迪锐克斯拉算法是生成一个从源点出发到各个点的最小距离表。
举例:有向图如图所示
从给定的出发点a出发,最终要获得的是a到b,c,d,e每个点之间的最短距离。默认a到自己的距离是0,其他的点还没到达的点的距离是正无穷。已经确定的答案不动,在没有确定的记录中找一个最小的出来。
a | b | c | d | e |
---|---|---|---|---|
0 | 正无穷 | 正无穷 | 正无穷 | 正无穷 |
所以先从a点出发的三条边1,2,6。中找出权重为1的边,ad距离为1,小于之前的正无穷(比之前距离小),所以更新a到d之间的距离,bcd同理。所以更新完后距离如下:
a | b | c | d | e |
---|---|---|---|---|
0 | 2 | 6 | 1 | 正无穷 |
此时,从a出发的三条边已经走完,所以a点确定下来,再也不动。
其余没有确定的记录中d是最短的(从a出发到b的距离为1),所以从d开始向下找(d属于中间的跳点)。
d出发的边有两条,分别是dc和de。其中dc距离为2,再加上之前a到d的距离为1,所以此时a到c的距离经过d跳转后为3,小于之前的6,所以更新ac之间距离,同样de距离7小于正无穷。所以也进行更新。d也确定了。
a | b | c | d | e |
---|---|---|---|---|
0 | 2 | 3 | 1 | 7 |
接下来从不确定的记录中根据最小的向下找。b点出发的边有一条be,be距离9加上a到b的距离2,所以be距离为11,大于之前的,不更新。b也确定了。
a | b | c | d | e |
---|---|---|---|---|
0 | 2 | 3 | 1 | 7 |
还剩下c,从c点出发的边有两条,cb和ce,因为b点已经确定了不再动,所以一看ce一条,ce距离为3,a到c距离为3,所以ae之间距离为6,小于之前,更新e点距离。
a | b | c | d | e |
---|---|---|---|---|
0 | 2 | 3 | 1 | 6 |
代码
根据上面的分析进行代码的实现,不过getMinDistanceAndUnSelectNode有瑕疵,因为每找一个minNode就会在集合中都遍历一次。会在下面进行代码优化。
public static HashMap<Node, Integer> dijkstra1(Node from) {
HashMap<Node, Integer> distanceMap = new HashMap<>();
distanceMap.put(from, 0);
//已经确定的边;
HashSet<Node> selectedNodes = new HashSet<>();
//根据已经确定的记录 和 map,找出没确定的中最小的记录
Node minNode = getMinDistanceAndUnSelectNode(distanceMap, selectedNodes);
while (minNode != null) {
int distance = distanceMap.get(minNode);
for (Edge edge : minNode.edges) {
Node toNode = edge.to;
if (!distanceMap.containsKey(toNode)) {
distanceMap.put(toNode, distance + edge.weight);
} else {
//edge.weight + distance 当前边的权重 + 我此时当做跳点的距离。
//distanceMap.get(toNode) 已经存在的距离
distanceMap.put(toNode, Math.min(distanceMap.get(toNode), (edge.weight + distance)));
}
}
//所有的边都已经遍历完,这个点可以确定了,放到确定的集合中。
selectedNodes.add(minNode);
//再次获取最小的记录
minNode = getMinDistanceAndUnSelectNode(distanceMap, selectedNodes);
}
return distanceMap;
}
public static Node getMinDistanceAndUnSelectNode(HashMap<Node, Integer> distanceMap, HashSet<Node> selectedNode) {
Node minNode = null;
int minDistance = Integer.MAX_VALUE;
for (Map.Entry<Node, Integer> entry : distanceMap.entrySet()) {
Node node = entry.getKey();
int distance = entry.getValue();
if (!selectedNode.contains(node) && distance < minDistance) {
minDistance = distance;
minNode = node;
}
}
return minNode;
}