[足式机器人]Part3机构运动微分几何学分析与综合Ch03-1 空间约束曲线与约束曲面微分几何学——【读书笔记】

news2025/1/9 15:42:41

本文仅供学习使用
本文参考:
《机构运动微分几何学分析与综合》-王德伦、汪伟
《微分几何》吴大任

Ch01-4 平面运动微分几何学

  • 3.1 空间曲线微分几何学概述
    • 3.1.1 矢量表示
    • 3.1.2 Frenet标架


连杆机构中的连杆与连架杆构成运动副,该运动副元素的特征点特征线机架坐标系中的运动轨迹曲线或曲面称为约束曲线约束曲面,是联系刚体运动与机构运动综合的桥梁,其几何性质是机构运动综合的理论基础,既是曲线与曲面的几何学研究内容,也是连杆机构运动几何学分析与综合的课题。然而,研究曲线与曲面的几何学,微分几何学方法无疑是自然而然的选择,将其与机构运动学结合,形成以点与线的运动方式研究约束曲线与曲面几何性质,为机构运动几何学分析与综合提供理论依据。
为方便阅读后续内容,在第3.1和第3.2节简单概述微分几何学基本知识;采用微分几何量方法研究连杆机构中典型而又重要的约束曲线与约束曲面,称为空间约束曲线与约束曲面微分几何学

3.1 空间曲线微分几何学概述

3.1.1 矢量表示

在直角坐标中表达一条空间曲线 Γ \Gamma Γ时,有:
{ x = x ( t ) y = y ( t ) z = z ( t ) \left\{ \begin{matrix} x=x(t) \\ y=y(t) \\ z=z(t) \\ \end{matrix} \right. x=x(t)y=y(t)z=z(t)
式中, t t t为曲线的参数,若置换自变量或者消去参数 t t t,则可写成:
{ y = y ( x ) z = z ( x ) \left\{ \begin{matrix} y=y(x) \\ z=z(x) \\ \end{matrix} \right. {y=y(x)z=z(x)
或者写成隐函数形式:
{ F 1 ( x , y , z ) = 0 F 2 ( x , y , z ) = 0 \left\{ \begin{matrix} {{F}_{1}}(x,y,z)=0 \\ {{F}_{2}}(x,y,z)=0 \\ \end{matrix} \right. {F1(x,y,z)=0F2(x,y,z)=0
若将上述 x , y , z x,y,z x,y,z置于空间固定坐标系 { O : i , j , k } \{O:i,j,k\} {O:i,j,k}中,则曲线 Γ \Gamma Γ以参数 t t t表示的矢量方程为:
Γ : R = x ( t ) i + y ( t ) j + z ( t ) k \Gamma :R=x(t)i+y(t)j+z(t)k Γ:R=x(t)i+y(t)j+z(t)k
可以将其简化为:
R = R ( t ) R=R(t) R=R(t)
式(3.4)式(3.5)为空间曲线 Γ \Gamma Γ的矢量表达式, t t t为曲线 Γ \Gamma Γ的一般参数。在 第1章平面曲线的微分几何学 中引入了圆矢量函数用来描述曲线的矢量方程,使得形式简洁并便于计算。因此对于空间曲线 Γ \Gamma Γ的矢量方程式(3.4),可以选择任意两个坐标轴上的分量用圆矢量函数进行描述。例如,将曲线 Γ \Gamma Γ上任意点的矢径在坐标平面 O − i j O-ij Oij上的投影矢量用圆矢量函数描述,如下图所示。
在这里插入图片描述

则其矢量方程可以写出另一种形式:
Γ : R = r ( φ ) e I ( φ ) + z ( φ ) k \Gamma :R=r(\varphi ){{e}_{I(\varphi )}}+z(\varphi )k Γ:R=r(φ)eI(φ)+z(φ)k
对于空间曲线 Γ \Gamma Γ,弧长参数 s s s为其自然参数,且与一般参数 t t t的关系为:
s = ∫ t a t b ∣ d R d t ∣ d t , d s = ∣ d R ∣ = ( d x d t ) 2 + ( d y d t ) 2 + ( d z d t ) 2 d t s=\int_{{{t}_{a}}}^{{{t}_{b}}}{\left| \frac{dR}{dt} \right|dt,ds=\left| dR \right|}=\sqrt{{{(\frac{dx}{dt})}^{2}}+{{(\frac{dy}{dt})}^{2}}+{{(\frac{dz}{dt})}^{2}}}dt s=tatb dtdR dt,ds=dR=(dtdx)2+(dtdy)2+(dtdz)2 dt

空间曲线 Γ \Gamma Γ的矢量方程用弧长参数 s s s表示为:
Γ : R = R ( s ) , s a ≤ s ≤ s b \Gamma :R=R(s),{{s}_{a}}\le s\le {{s}_{b}} Γ:R=R(s),sassb

:书中为 Γ : R = R ( s ) , s a ≤ a ≤ s b \Gamma :R=R(s),{{s}_{a}}\le a\le {{s}_{b}} Γ:R=R(s),saasb

【例3-1】 球面曲线如下图所示:
在这里插入图片描述
对于球面曲线 Γ \Gamma Γ,习惯于将直角坐标系 { O : i , j , k } \{O:i,j,k\} {O:i,j,k}原点置于球心,则用直角坐标表示为:
{ x = x ( t ) , y = y ( t ) , z = z ( t ) x 2 + y 2 + z 2 = R 2 \left\{ \begin{matrix} x=x(t),y=y(t),z=z(t) \\ {{x}^{2}}+{{y}^{2}}+{{z}^{2}}={{R}^{2}} \\ \end{matrix} \right. {x=x(t),y=y(t),z=z(t)x2+y2+z2=R2
式中, R R R为球面半径, t t t为球面曲线的参数,若置换自变量或者消去参数 t t t,可写成:
{ z = z ( x , y ) x 2 + y 2 + z 2 = R 2 \left\{ \begin{matrix} z=z(x,y) \\ {{x}^{2}}+{{y}^{2}}+{{z}^{2}}={{R}^{2}} \\ \end{matrix} \right. {z=z(x,y)x2+y2+z2=R2
由于球面曲线上的点始终分布在一球面上,因此往往用球面坐标表示曲线为:
δ = δ ( t ) , φ = φ ( t ) , r = R \delta =\delta (t),\varphi =\varphi (t),r=R δ=δ(t),φ=φ(t),r=R
式中, δ \delta δ是由原点0到曲线上点 P P P的有向线段 O P OP OP k k k的夹角; φ \varphi φ O P OP OP O − i j O-ij Oij面上的投影与i的夹角, δ \delta δ φ \varphi φ的取值范围分别为 [ 0 , π ] [0,\pi ] [0,π] [ 0 , 2 π ] [0,2\pi ] [0,2π]。点 P P P在坐标系 { O : i , j , k } \{O:i,j,k\} {O:i,j,k}中的球面坐标与直角坐标之间具有如下转换关系
x = R sin ⁡ δ cos ⁡ φ , y = R sin ⁡ δ sin ⁡ φ , z = R cos ⁡ δ x=R\sin \delta \cos \varphi ,y=R\sin \delta \sin \varphi ,z=R\cos \delta x=Rsinδcosφ,y=Rsinδsinφ,z=Rcosδ
将上述 x , y , z x,y,z x,y,z置于坐标系 { O : i , j , k } \{O:i,j,k\} {O:i,j,k}中,则球面曲线以参数 t t t表示的矢量方程为:
Γ : R = R ( t ) = x ( t ) i + y ( t ) j + z ( t ) k \Gamma :R=R(t)=x(t)i+y(t)j+z(t)k Γ:R=R(t)=x(t)i+y(t)j+z(t)k
若通过圆矢量函数表示球面曲线的矢量方程,则为:
R = R sin ⁡ δ ( φ ) e I ( φ ) + R cos ⁡ δ ( φ ) k R=R\sin \delta (\varphi ){{e}_{I(\varphi )}}+R\cos \delta (\varphi )k R=Rsinδ(φ)eI(φ)+Rcosδ(φ)k
比较式(E3-1.1)、式(E3-1.4)与式(E3-1.6)可知,采用矢量表示的球面曲线比其他方式表达要简单的多。

【例3-2】 圆柱面曲线如下图所示:
在这里插入图片描述
圆柱面曲线在直角坐标系 { O : i , j , k } \{O:i,j,k\} {O:i,j,k}中的方程为:
{ x = r 0 cos ⁡ φ y = r 0 sin ⁡ φ z = z ( φ ) \left\{ \begin{matrix} x={{r}_{0}}\cos \varphi \\ y={{r}_{0}}\sin \varphi \\ z=z(\varphi ) \\ \end{matrix} \right. x=r0cosφy=r0sinφz=z(φ)
式中, r 0 {{r}_{0}} r0为圆柱面半径。若通过圆矢量函数表示圆柱面曲线的矢量方程,则为:
R = r 0 e I ( φ ) + z ( φ ) k R={{r}_{0}}{{e}_{I(\varphi )}}+z(\varphi )k R=r0eI(φ)+z(φ)k

3.1.2 Frenet标架

空间曲线 Γ ⃗ : R ⃗ = R ⃗ ( s ) \vec{\varGamma}:\vec{R}=\vec{R}\left( s \right) Γ :R =R (s) 在任意点 P P P处有两个无限接近位置的点连线组成切线,其单位切矢 α ⃗ ( s ) = d R ⃗ ( s ) d s \vec{\alpha}\left( s \right) =\frac{\mathrm{d}\vec{R}\left( s \right)}{\mathrm{d}s} α (s)=dsdR (s)始终指向曲线弧长增加的方向,将切矢 α ⃗ ( s ) \vec{\alpha}\left( s \right) α (s) 对弧长参数求导,可得:

d α ⃗ ( s ) d s = k ( s ) β ⃗ ( s ) \frac{\mathrm{d}\vec{\alpha}\left( s \right)}{\mathrm{d}s}=k\left( s \right) \vec{\beta}\left( s \right) dsdα (s)=k(s)β (s)

其中, k ( s ) k\left( s \right) k(s) 称为曲线 Γ ⃗ \vec{\varGamma} Γ 在点 P P P 处的曲率,即三个无限接近位置点构成空间曲线在该点处的密切平面曲率是空间曲线在密切平面内的弯曲程度,体现了曲线的切矢的倾斜角对弧长参数的变化率。与平面曲线曲率不同,空间曲线的曲率非负 β ⃗ ( s ) \vec{\beta}\left( s \right) β (s) 称为曲线 Γ ⃗ \vec{\varGamma} Γ 在点 P P P 处的主法矢,指向了曲线在该点的曲率中心。当 k ( s ) ≠ 0 k\left( s \right) \ne 0 k(s)=0 时,其倒数 ρ ( s ) = 1 / k ( s ) \rho \left( s \right) =1/k\left( s \right) ρ(s)=1/k(s) 称为曲线 Γ ⃗ \vec{\varGamma} Γ 曲率半径,则曲线 Γ ⃗ \vec{\varGamma} Γ 曲率中心 C C C的矢量为:

R ⃗ C = R ⃗ P + ρ ⋅ β ⃗ \vec{R}_{\mathrm{C}}=\vec{R}_{\mathrm{P}}+\rho \cdot \vec{\beta} R C=R P+ρβ

由空间曲线 Γ ⃗ \vec{\varGamma} Γ 在点 P P P 处的切矢 α ⃗ ( s ) \vec{\alpha}\left( s \right) α (s)主法矢 β ⃗ ( s ) \vec{\beta}\left( s \right) β (s) 可以构建矢量 γ ⃗ ( s ) = α ⃗ ( s ) × β ⃗ ( s ) \vec{\gamma}\left( s \right) =\vec{\alpha}\left( s \right) \times \vec{\beta}\left( s \right) γ (s)=α (s)×β (s) ,称之为曲线的副法矢,从而在空间曲线 Γ ⃗ \vec{\varGamma} Γ 上构造了单位右手系正交标架 { R ⃗ ( s ) ; α ⃗ ( s ) , β ⃗ ( s ) , γ ⃗ ( s ) } \left\{ \vec{R}\left( s \right) ;\vec{\alpha}\left( s \right) ,\vec{\beta}\left( s \right) ,\vec{\gamma}\left( s \right) \right\} {R (s);α (s),β (s),γ (s)} ,称为曲线 Γ ⃗ \vec{\varGamma} Γ 在点 P P PFrenet标架

在这里插入图片描述
对于空间曲线 Γ ⃗ \vec{\varGamma} Γ P P P 点的Frenet标架 { R ⃗ ( s ) ; α ⃗ ( s ) , β ⃗ ( s ) , γ ⃗ ( s ) } \left\{ \vec{R}\left( s \right) ;\vec{\alpha}\left( s \right) ,\vec{\beta}\left( s \right) ,\vec{\gamma}\left( s \right) \right\} {R (s);α (s),β (s),γ (s)} ,其中标矢 α ⃗ ( s ) \vec{\alpha}\left( s \right) α (s) β ⃗ ( s ) \vec{\beta}\left( s \right) β (s) 确定了密切平面 β ⃗ ( s ) \vec{\beta}\left( s \right) β (s) γ ⃗ ( s ) \vec{\gamma}\left( s \right) γ (s) 确定的平面称为法平面,而 α ⃗ ( s ) \vec{\alpha}\left( s \right) α (s) γ ⃗ ( s ) \vec{\gamma}\left( s \right) γ (s) 确定的平面称为从切平面。可见Frenet标架由三个同空间曲线紧密联系的向量所组成,其微分运算公式为:

{ d R ⃗ ( s ) d s = α ⃗ ( s ) d α ⃗ ( s ) d s = k ( s ) β ⃗ ( s ) d β ⃗ ( s ) d s = − k ( s ) α ⃗ ( s ) + τ ( s ) γ ⃗ ( s ) d γ ⃗ ( s ) d s = − τ ( s ) β ⃗ ( s ) \begin{cases} \begin{array}{c} \frac{\mathrm{d}\vec{R}\left( s \right)}{\mathrm{d}s}=\vec{\alpha}\left( s \right)\\ \frac{\mathrm{d}\vec{\alpha}\left( s \right)}{\mathrm{d}s}=k\left( s \right) \vec{\beta}\left( s \right)\\ \end{array}\\ \begin{array}{c} \frac{\mathrm{d}\vec{\beta}\left( s \right)}{\mathrm{d}s}=-k\left( s \right) \vec{\alpha}\left( s \right) +\tau \left( s \right) \vec{\gamma}\left( s \right)\\ \frac{\mathrm{d}\vec{\gamma}\left( s \right)}{\mathrm{d}s}=-\tau \left( s \right) \vec{\beta}\left( s \right)\\ \end{array}\\ \end{cases} dsdR (s)=α (s)dsdα (s)=k(s)β (s)dsdβ (s)=k(s)α (s)+τ(s)γ (s)dsdγ (s)=τ(s)β (s)

其中, τ ( s ) \tau \left( s \right) τ(s) 称为空间曲线 Γ ⃗ \vec{\varGamma} Γ 在点 P P P 处的挠率,它衡量了曲线在点 $P$ 的(密切平面)副法矢 $\vec{\gamma}\left( s \right)$ 倾斜角对弧长的变化率,从而描述了曲线在该点偏离密切平面的程度。上式也称为空间曲线的Frenet公式

由Frenet公式可以得到空间曲线 Γ ⃗ \vec{\varGamma} Γ 曲率 k k k 和挠率 τ \tau τ 的表达式为:

k = ∣ d 2 R ⃗ ( s ) d s 2 ∣ , τ = ( d R ⃗ ( s ) d s , d 2 R ⃗ ( s ) d s 2 , d 3 R ⃗ ( s ) d s 3 ) / ∣ d 2 R ⃗ ( s ) d s 2 ∣ 2 k=\left| \frac{\mathrm{d}^2\vec{R}\left( s \right)}{\mathrm{d}s^2} \right|,\tau =\left( \frac{\mathrm{d}\vec{R}\left( s \right)}{\mathrm{d}s},\frac{\mathrm{d}^2\vec{R}\left( s \right)}{\mathrm{d}s^2},\frac{\mathrm{d}^3\vec{R}\left( s \right)}{\mathrm{d}s^3} \right) /\left| \frac{\mathrm{d}^2\vec{R}\left( s \right)}{\mathrm{d}s^2} \right|^2 k= ds2d2R (s) ,τ=(dsdR (s),ds2d2R (s),ds3d3R (s))/ ds2d2R (s) 2

若空间曲线 Γ ⃗ \vec{\varGamma} Γ 是以一般参数 t t t 进行描述的,则其曲率 k ( s ) k(s) k(s) 和挠率 τ ( s ) \tau \left( s \right) τ(s) 的表达式为:
k = ∣ d R ⃗ d t × d 2 R ⃗ d t 2 ∣ / ∣ d R ⃗ d t ∣ 3 , τ = ( d R ⃗ d t , d 2 R ⃗ d t 2 , d 3 R ⃗ d t 3 ) / ( d R ⃗ d t × d 2 R ⃗ d t 2 ) 2 k=\left| \frac{\mathrm{d}\vec{R}}{\mathrm{d}t}\times \frac{\mathrm{d}^2\vec{R}}{\mathrm{d}t^2} \right|/\left| \frac{\mathrm{d}\vec{R}}{\mathrm{d}t} \right|^3,\tau =\left( \frac{\mathrm{d}\vec{R}}{\mathrm{d}t},\frac{\mathrm{d}^2\vec{R}}{\mathrm{d}t^2},\frac{\mathrm{d}^3\vec{R}}{\mathrm{d}t^3} \right) /\left( \frac{\mathrm{d}\vec{R}}{\mathrm{d}t}\times \frac{\mathrm{d}^2\vec{R}}{\mathrm{d}t^2} \right) ^2 k= dtdR ×dt2d2R / dtdR 3,τ=(dtdR ,dt2d2R ,dt3d3R )/(dtdR ×dt2d2R )2
对于空间曲线来说,曲率 k ( s ) k(s) k(s) 和挠率 τ ( s ) \tau \left( s \right) τ(s) 不依赖于坐标系的选定。是空间曲线的不变量,能够唯一地确定空间曲线,可以将 k = k ( s ) , τ = τ ( s ) k=k\left( s \right) ,\tau =\tau \left( s \right) k=k(s),τ=τ(s) 称为空间曲线的自然方程。于是有:

定理3.1:在区间 0 ⩽ s ⩽ l 0\leqslant s\leqslant l 0sl上任意给定连续可微函数 $k\left( s \right) >0 $ 和连续函数 τ ( s ) \tau \left( s \right) τ(s) 以及初始右手系正交标架 { R ⃗ 0 ; α ⃗ 0 , β ⃗ 0 , γ ⃗ 0 } \left\{ \vec{R}_0;\vec{\alpha}_0,\vec{\beta}_0,\vec{\gamma}_0 \right\} {R 0;α 0,β 0,γ 0} ,则一定有且仅有一条以 s s s 为弧长、以 k ( s ) k\left( s \right) k(s) 为曲率、 τ ( s ) \tau \left( s \right) τ(s) 为挠率的空间有向曲线。

建立了空间曲线 Γ ⃗ \vec{\varGamma} Γ P P P 点处的Frenet标架 { R ⃗ ( s ) ; α ⃗ ( s ) , β ⃗ ( s ) , γ ⃗ ( s ) } \left\{ \vec{R}\left( s \right) ;\vec{\alpha}\left( s \right) ,\vec{\beta}\left( s \right) ,\vec{\gamma}\left( s \right) \right\} {R (s);α (s),β (s),γ (s)} ,可将曲线 Γ ⃗ \vec{\varGamma} Γ 在点 P P P的邻域内按照泰勒公式展开。假定曲线 Γ ⃗ \vec{\varGamma} Γ 在点 P P P 处的弧长为 s s s,则有:

R ⃗ ( s + Δ s ) = R ⃗ ( s ) + d R ⃗ ( s ) d s Δ s + 1 2 ! d 2 R ⃗ ( s ) d s 2 ( Δ s ) 2 + ⋯ + 1 n ! d n R ⃗ ( s ) d s n ( Δ s ) n + ε n ( s , Δ s ) ( Δ s ) n \vec{R}\left( s+\varDelta s \right) =\vec{R}\left( s \right) +\frac{\mathrm{d}\vec{R}\left( s \right)}{\mathrm{d}s}\varDelta s+\frac{1}{2!}\frac{\mathrm{d}^2\vec{R}\left( s \right)}{\mathrm{d}s^2}\left( \varDelta s \right) ^2+\cdots +\frac{1}{n!}\frac{\mathrm{d}^n\vec{R}\left( s \right)}{\mathrm{d}s^n}\left( \varDelta s \right) ^n+\varepsilon _{\mathrm{n}}\left( s,\varDelta s \right) \left( \varDelta s \right) ^n R (s+Δs)=R (s)+dsdR (s)Δs+2!1ds2d2R (s)(Δs)2++n!1dsndnR (s)(Δs)n+εn(s,Δs)(Δs)n

式中, lim ⁡ Δ s → 0 ε n ( s , Δ s ) = 0 , d R ⃗ d s = α ⃗ , d 2 R ⃗ d s 2 = k β ⃗ , d 3 R ⃗ d s 3 = − k 2 α ⃗ + d k d s β ⃗ + k τ γ ⃗ \lim_{\varDelta s\rightarrow 0} \varepsilon _{\mathrm{n}}\left( s,\varDelta s \right) =0,\frac{\mathrm{d}\vec{R}}{\mathrm{d}s}=\vec{\alpha},\frac{\mathrm{d}^2\vec{R}}{\mathrm{d}s^2}=k\vec{\beta},\frac{\mathrm{d}^3\vec{R}}{\mathrm{d}s^3}=-k^2\vec{\alpha}+\frac{\mathrm{d}k}{\mathrm{d}s}\vec{\beta}+k\tau \vec{\gamma} limΔs0εn(s,Δs)=0,dsdR =α ,ds2d2R =kβ ,ds3d3R =k2α +dsdkβ +kτγ ,并以此可以得到矢径 R ⃗ ( s ) \vec{R}\left( s \right) R (s) 关于弧长参数的各阶导数。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/873214.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

二十二、策略模式

目录 1、项目需求2、传统方案解决鸭子问题的分析和代码实现3、传统方式实现存在的问题分析和解决方案4、策略模式基本介绍5、使用策略模式解决鸭子问题6、策略模式的注意事项和细节7、策略模式的使用场景 以具体项目来演示为什么需要策略模式,策略模式的优点&#x…

GitHub 如何部署写好的H5静态页面

感谢粉皮zu的私信,又有素材写笔记了。(●’◡’●) 刚好记录一下我示例代码的GitHub部署配置,以便于后期追加仓库。 效果 环境 gitwin 步骤 第一步 新建仓库 第二步 拉取代码 将仓库clone到本地 git clone 地址第三步 部署文件 新建.github\workflo…

线性规划模型-应用篇

文章目录 模型特点使用技巧工具包和求解器模型线性化 应用实例经验总结 模型特点 上一篇中,详细阐述了线性规划问题和单纯形法的算法原理,本文将着重介绍线性模型在工业场景中的应用。 首先需要说清楚的是,为什么线性模型深受研发人员青睐。…

五、约束编程求解优化问题

文章目录 1、瑶草问题-离散优化问题2、重试优化3、分支限界法-改进重试优化法4、重启式搜索4.1 重启方针/策略4.2 自动化搜索策略 THE END 1、瑶草问题-离散优化问题 \qquad 要求在一个建木上构建一个完整的分枝树,每一个完整的分枝有100段,完整分枝上的…

2023年《开学第一课》播出时间是什么时候?开学第一课怎么在手机上观看高清直播?

2023年《开学第一课》播出时间是什么时候? 根据往年《开学第一课》播出时间预计2023年《开学第一课》播出时间是2023年9月1日20:00,如有变化请以官方公布为准; 2023年开学第一课怎么在手机上观看高清直播? 1、打开手机微信&…

第三章,矩阵,07-用初等变换求逆矩阵、矩阵的LU分解

第三章,矩阵,07-用初等变换求逆矩阵、矩阵的LU分解 一个基本的方法求 A − 1 B A^{-1}B A−1BLU分解例1,求矩阵A的LU分解:例12,LU分解解线性方程组: 玩转线性代数(19)初等矩阵与初等变换的相关应用的笔记&a…

Rx.NET in Action 第一章学习笔记

Part 1 初入反应式扩展 什么是反应式程序?它们有什么用?使用反应式扩展(Rx)编程,会如何改变你编写代码的方式?在开始使用 Rx 之前应该做些什么?为什么 Rx 比传统的事件驱动编程更好&#xff1f…

简单认识Zabbix监控系统及配置

文章目录 一、zabbix概述1、定义2、zabbix监控原理3、监控对象4、zabbix的3种架构(1) C/S架构(2)分布式架构:zabbix-proxy-client架构(3) master-node-client架构 5、zabbix监控模式 二、部署za…

Apollo Planning2.0决策规划算法代码详细解析 (1):环境搭建

背景: apollo开源团队近期更新了planning版本,对代码进行了一定程度上的重构。 重构后代码结构更加清晰,对扩展更为友好;此外,也更新了dreamview对pnc的支持,使得调试更加方便。 本教程将继续更新对于Apollo Planning2.0决策规划算法代码的详细解析,便于大家更好理解…

[鹏城杯 2022]简单包含

直接用php:// 有wtf 加脏数据绕过

Spring boot中的线程池-ThreadPoolTaskExecutor

一、jdk的阻塞队列: 二、Spring boot工程的有哪些阻塞队列呢? 1、默认注入的ThreadPoolTaskExecutor 视频解说: 线程池篇-springboot项目中的service层里简单注入ThreadPoolTaskExecutor并且使用_哔哩哔哩_bilibili 程序代码:…

Impala实践:解析glog打印的 C++ 报错堆栈

Impala实践:解析glog打印的 C 报错堆栈 Impala使用glog生成日志。生产环境用的都是release build,glog产生的报错堆栈里没有函数名,很难像Java报错堆栈那样方便定位问题。下面是 Impalad 日志中的一个报错: I0522 09:07:16.0020…

浅复制和深复制(使用python)

在编程语言中,复制通常是通过赋值操作来实现的。具体实现方式可能因编程语言而异。 1. 浅复制(Shallow Copy) 浅复制是指创建一个新对象,新对象的内容是原始对象的引用。换句话说,新对象和原始对象共享相同的数据&am…

【JVM】JVM 调优的参数都有哪些?

文章目录 1. 设置堆空间大小2. 虚拟机栈的设置3. 年轻代中Eden区和两个Survivor区的大小比例4. 年轻代晋升老年代阈值5. 设置垃圾回收收集器 1. 设置堆空间大小 设置堆的初始大小和最大大小,为了防止垃圾收集器在初始大小、最大大小之间收缩堆而产生额外的时间&…

【Linux系统编程】21.echo、env、fork、getpid、getppid

目录 echo PATH SHELL TERM LANG HOME env fork 返回值 getpid getppid 测试代码1 测试结果 测试代码2 测试结果 父子进程相同 父子进程不同 父子进程共享 echo 查看单个环境变量。 PATH 可执行文件的搜索路径。 SHELL 当前Shell。 TERM 当前终端类型。终端…

一休休的面试题

重点面试题(今天又看了很多的博客大概有个三十来篇吧所以总结了一休休的面试题): ps:已经入秋了为什么还是这么热!!! 1、受管 bean 的生命周期 对于普通的 Java 对象,new 的时候会去创建对象,而当它没有…

Redis进阶(3)——在Linux上基于Docker容器Redis搭建一主二从三哨兵 SpringBoot整合Redis哨兵

目录 引出redis主从搭建:一主2从6389Master准备文件redis.confredis.log日志文件运行容器查看日志方式tail 6390Slave6391Slave 创建3哨兵创建文件夹sentinel创建运行哨兵容器问题:脑裂问题 SpringBoot整合Redis哨兵启动1主2从,3哨兵pom.xml文…

聊聊服务端缓存那些事(预热、淘汰、污染、雪崩、穿透、击穿等)

文章目录 概要一、缓存预热二、缓存污染2.1、先更新数据库再更新缓存2.2、先更新缓存再更新数据库2.3、先删除缓存再更新数据库,读时再更新2.4、先更新数据库再删除缓存,读时再更新2.5、缓存污染总结2.6、删除缓存失败了怎么办?2.7、延迟双删…

【数据结构与算法】十大经典排序算法-堆排序

🌟个人博客:www.hellocode.top 🏰Java知识导航:Java-Navigate 🔥CSDN:HelloCode. 🌞知乎:HelloCode 🌴掘金:HelloCode ⚡如有问题,欢迎指正&#…

JZ33二叉搜索树的后序遍历序列

题目地址:二叉搜索树的后序遍历序列_牛客题霸_牛客网 题目回顾: 解题思路: 使用栈 栈的特点是:先进后出。 通读题目后,我们可以得出,二叉搜索树是左子节点小于根节点,右子节点大于根节点。 …