chapter 1 formation of crystal, basic concepts

news2024/11/26 10:33:49

chapter 1 晶体的形成

在这里插入图片描述

1.1 Quantum Mechanics and atomic structure

SUMMARY OF 1.1

1.1.1 Old Quantum Theory

problems of planetary model:

  • atom would be unstable
  • radiate EM wave of continuous frequency

to solve the prablom of planetary model:

  • Bohr: Quantum atomic structure
  • Planck: Quantum

Old Quantum Theory: Planck, Einstein, Bohr, de Broglie

  1. Planck’s theory: Each atomic oscillator can have only discrete values of energy. E = n h ν , n = 0 , 1 , 2 , … E=nh \nu, n=0, 1, 2, \dots E=nhν,n=0,1,2,
  2. Einstein: photon, E = h ν = ℏ ω E=h\nu=\hbar \omega E=hν=ω, p = E c n = h ν c n = h λ n = ℏ k p= \frac{E}{c}n=\frac{h\nu}{c}n=\frac{h}{\lambda}n=\hbar k p=cEn=chνn=λhn=k
  3. Bohr: H atom model
  4. de Broglie: Matter wave, E = h ν = ℏ ω E=h\nu=\hbar \omega E=hν=ω, E k = 1 2 m ν 2 = p 2 2 m = ( ℏ k ) 2 2 m E_k=\frac{1}{2}m\nu^2=\frac{p^2}{2m}=\frac{(\hbar k)^2}{2m} Ek=21mν2=2mp2=2m(k)2

from de Broglie’s Hypothesis, the motion of a particle is governed by the wave propagation properties of matter wave, which means wave function.

1.1.2 Method of Quantum Mechanics

In method of Quantum Mechanics, we should get the Schrodinger Equation and solve it, then find the wave function ψ \psi ψ.

Schrodinger Equation (very important):
i ℏ ∂ Ψ ∂ t = − ℏ 2 2 m ∇ 2 Ψ + U Ψ i\hbar \frac{\partial \Psi}{\partial t}=-\frac{\hbar^2}{2m}\nabla^2 \Psi+U\Psi itΨ=2m22Ψ+UΨ

a. Schrodinger Equation of free particle

KaTeX parse error: Undefined control sequence: \pPsi at position 24: …\frac{\partial \̲p̲P̲s̲i̲}{\partial t}= …

wave function of free particle: ψ ( r ⃗ , t ) = A e − i ℏ ( E t − p ⋅ r ) \psi (\vec r, t)=A e^{-\frac{i}{\hbar} (Et-p \cdot r)} ψ(r ,t)=Aei(Etpr)

E ⟶ i ℏ ∂ ∂ t E \longrightarrow i \hbar \frac{\partial}{\partial t} Eit

p ⟶ − i ℏ ∇ \mathbf{p} \longrightarrow - i\hbar \nabla piℏ∇

b. Schrodinger Equation of particle in a force field

i ℏ ∂ Ψ ∂ t = − ℏ 2 2 m ∇ 2 Ψ + U Ψ i \hbar \frac{\partial \Psi}{\partial t}= - \frac{\hbar^2}{2m}\nabla^2\Psi + U \Psi itΨ=2m22Ψ+UΨ

We consider time-independent Schrodinger Equation:

U ( r , t ) ⟶ U ( r ) U(\mathbf{r},t) \longrightarrow U(\mathbf{r}) U(r,t)U(r)

then separation of variables: KaTeX parse error: Undefined control sequence: \math at position 28: …f{r} ,t)= \psi(\̲m̲a̲t̲h̲{r})f(t)

Halmiton operator: H ^ = − ℏ 2 2 m ∇ 2 + U \hat H = -\frac{\hbar^2}{2m} \nabla^2+U H^=2m22+U

so the Schrodinger Equ becomes a new style:

H ^ ψ = E ψ \hat H \psi = E \psi H^ψ=Eψ

H ^ Ψ = i ℏ ∂ ∂ t Ψ \hat H \Psi = i\hbar \frac{\partial }{\partial t} \Psi H^Ψ=itΨ

c. Infinite Potential Well

− ( ℏ 2 2 m d 2 d x 2 + U ( x ) ) ψ ( x ) = E ψ ( x ) -(\frac{\hbar^2}{2m}\frac{d^2}{dx^2}+U(x))\psi (x) = E \psi(x) (2m2dx2d2+U(x))ψ(x)=Eψ(x)

ψ ( x ) = 2 a s i n n π a x \psi (x) = \sqrt{\frac{2}{a}}sin{\frac{n \pi}{a}x} ψ(x)=a2 sinax

E = E n = π 2 ℏ 2 2 m a 2 n 2 , n = 1 , 2 , 3 , … E=E_n = \frac{\pi^2 \hbar^2}{2ma^2}n^2, n = 1, 2, 3, \dots E=En=2ma2π22n2,n=1,2,3,

d. Harmonic Oscillator 1D

− ( ℏ 2 2 m d 2 d x 2 + 1 2 m ω 2 x 2 ) ψ ( x ) = E ψ ( x ) -(\frac{\hbar^2}{2m}\frac{d^2}{dx^2}+\frac{1}{2}m\omega^2 x^2)\psi (x) = E \psi(x) (2m2dx2d2+21mω2x2)ψ(x)=Eψ(x)

E n = ( n + 1 2 ) ℏ ω = ( n + 1 2 ) h ν , n = 0 , 1 , 2 , 3 , … E_n = (n + \frac{1}{2})\hbar \omega = (n+\frac{1}{2})h \nu, n = 0, 1, 2, 3, \dots En=(n+21)ω=(n+21)hν,n=0,1,2,3,

  • E m i n = 1 2 h ν ( ≠ 0 ) E_{min}= \frac{1}{2}h\nu(\neq 0) Emin=21hν(=0), which is different from Planck’s blackbody theory ( E = n h ν , E m i n = 0 E=nh\nu, E_{min}=0 E=nhν,Emin=0)
  • In classical mechanics, the particle can bot exceed x(max), but in quantum mechanics, the particle may exceed x(max) (qith low probabilities)

e. Finite Potential Well

( − ℏ 2 2 m d 2 d x 2 + U ( x ) ) ψ ( x ) = E ψ ( x ) (-\frac{\hbar^2}{2m}\frac{d^2}{dx^2}+U(x))\psi(x) = E\psi(x) (2m2dx2d2+U(x))ψ(x)=Eψ(x)

Quantum Tunneling

f. Atomic Structure, Schrodinger Equ. for H Atom

( − ℏ 2 2 m ∇ 2 + U ) ψ = E ψ , ∇ 2 = ∂ 2 ∂ x 2 + ∂ 2 ∂ y 2 + ∂ 2 ∂ z 2 (-\frac{\hbar^2}{2m}\nabla^2 + U)\psi = E\psi, \nabla^2 = \frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}+\frac{\partial^2}{\partial z^2} (2m22+U)ψ=Eψ,2=x22+y22+z22

Schrodinger equ. becomes:

1 r 2 ∂ ∂ r ( r 2 ∂ ψ ∂ r ) + 1 r 2 sin ⁡ θ ∂ ∂ θ ( sin ⁡ θ ∂ ψ ∂ θ ) + 1 r 2 sin ⁡ 2 θ ∂ 2 θ ∂ ϕ 2 + 2 m ℏ ( E − U ) ψ = 0 \frac{1}{r^2} \frac{\partial}{\partial r}(r^2 \frac{\partial \psi}{\partial r}) +\frac{1}{r^2 \sin{\theta}} \frac{\partial}{\partial \theta}(\sin{\theta} \frac{\partial \psi}{\partial \theta}) + \frac{1}{r^2\sin^2{\theta}}\frac{\partial^2\theta}{\partial \phi^2} +\frac{2m}{\hbar}(E-U)\psi = 0 r21r(r2rψ)+r2sinθ1θ(sinθθψ)+r2sin2θ1ϕ22θ+2m(EU)ψ=0

use seperation of variables: ψ ( r , θ , ϕ ) = R ( r ) Θ ( θ ) Φ ( ϕ ) \psi(r, \theta, \phi) = R(r) \Theta(\theta) \Phi(\phi) ψ(r,θ,ϕ)=R(r)Θ(θ)Φ(ϕ)

Schrodinger equ. becomes:

− sin ⁡ 2 θ R d d r ( r 2 d R d r ) − 2 m ℏ 2 r 2 sin ⁡ 2 θ ( E − U ) − sin ⁡ θ Θ = 0 \frac{-\sin^2{\theta}}{R} \frac{d}{dr}(r^2\frac{dR}{dr}) -\frac{2m}{\hbar^2} r^2 \sin^2{\theta} (E-U) -\frac{\sin{\theta}}{\Theta} = 0 Rsin2θdrd(r2drdR)22mr2sin2θ(EU)Θsinθ=0

Both Equal to a constant

{ 1 Φ d 2 Φ d ϕ 2 = − m l 2 m l 2 sin ⁡ 2 θ − 1 Θ 1 sin ⁡ θ d d θ ( sin ⁡ θ d Θ d t h e t a ) = l ( l + 1 ) 1 R d d r ( r 2 d R d r ) + 2 m ℏ 2 r 2 ( E − U ) = l ( l + 1 ) \begin{cases} \frac{1}{\Phi} \frac{d^2\Phi}{d\phi^2} = -m_l^2 \\ \frac{m_l^2}{\sin^2{\theta}} -\frac{1}{\Theta} \frac{1}{\sin{\theta}} \frac{d}{d\theta} (\sin{\theta} \frac{d\Theta}{dtheta}) =l(l+1) \\ \frac{1}{R} \frac{d}{dr}(r^2 \frac{dR}{dr})+\frac{2m}{\hbar^2} r^2(E-U) = l(l+1) \end{cases} Φ1dϕ2d2Φ=ml2sin2θml2Θ1sinθ1dθd(sinθdthetadΘ)=l(l+1)R1drd(r2drdR)+22mr2(EU)=l(l+1)

(1) ϕ \phi ϕ must be single-valued: m l = 0 , ± 1 , ± 2 , … m_l = 0, \pm 1, \pm2, \dots ml=0,±1,±2,

(2) Θ \Theta Θ must be finite: l = 0 , 1 , 2 , … a n d    l ≥ ∣ m l ∣ l = 0, 1, 2, \dots and \ \ l \ge |m_l| l=0,1,2,and  lml

(3) R must be finite: E = E n = − Z 2 e 4 m 8 ϵ 0 2 h 2 1 n 2 ,   n = 1 , 2 , 3 , …    a n d    l < n E=E_n = -\frac{Z^2e^4 m}{8 \epsilon_0^2 h^2}\frac{1}{n^2}, \ n= 1, 2, 3, \dots \ \ and \ \ l<n E=En=8ϵ02h2Z2e4mn21, n=1,2,3,  and  l<n

{ 主量子数   n :   p r i n c i p l e   q u a n t u m   n u m b e r   ⟶   d e c i d e   E n 角量子数   l :   o r b i t a l   q u a n t u m   n u m b e r   ⟶   0 , 1 , 2 , … , n − 1 磁量子数   m l :   m a g n e t i c   q u a n t u m   n u m b e r   ⟶   0 , ± 1 , ± 2 , ± 3 , … , ± l \begin{cases} 主量子数 \ \ n:\ principle\ quantum\ number\ \longrightarrow\ decide\ E_n\\ 角量子数 \ \ l:\ orbital\ quantum\ number\ \longrightarrow\ 0, 1, 2, \dots , n-1 \\ 磁量子数 \ \ m_l: \ magnetic\ quantum\ number\ \longrightarrow\ 0, \pm 1, \pm2, \pm 3, \dots, \pm l \end{cases} 主量子数  n: principle quantum number  decide En角量子数  l: orbital quantum number  0,1,2,,n1磁量子数  ml: magnetic quantum number  0,±1,±2,±3,,±l

不考虑自旋,量子数=波函数个数=量子态数=轨道数

Pauli’s Exclusion Principle: not 2 electrons in a system ( an atom or a solid ) can be in the same quantum state ( have the same n, l, m l m_l ml, m s m_s ms)

1.1.3 Distributing functions of micro-particles

A system with N identical micro-particles, without either generation of new particles or vanishing of existed particles, without energy exchange—an isolated system

energy level: E 1 , E 2 , E 3 , … , E l , … E_1, E_2, E_3, \dots,E_l, \dots E1,E2,E3,,El,

degeneracy: ω 1 , ω 2 , ω 3 , …   . ω l , … \omega_1, \omega_2,\omega_3,\dots.\omega_l,\dots ω1,ω2,ω3,.ωl,

particle number: a 1 , a 2 , a 3 , … , a l , … a_1, a_2, a_3, \dots,a_l,\dots a1,a2,a3,,al,

全同性原理给量子统计和经典统计带来重要差别;
泡利不相容原理又给费米子和玻色子的统计带来重要差别。

自旋为 ± 1 2 \pm\frac{1}{2} ±21的粒子服从泡利不相容原理。

a. Boltzmann system

Every particle is identified, the number of particles in an quantum state is unlimited.

标号可分辨,能级上粒子数无限制

a l = ω l e α + β E l a_l = \frac{\omega_l}{e^{\alpha+\beta E_l}} al=eα+βElωl

Boltzmann statistics: f l = a l ω l = 1 e α + β E l = 1 e E l − μ k B T f_l = \frac{a_l}{\omega_l} = \frac{1}{e^{\alpha+\beta E_l}} = \frac{1}{e^{ \frac{E_l-\mu}{k_B T} }} fl=ωlal=eα+βEl1=ekBTElμ1

b. Bose system

Every particle is unidentified, the number of particles in an quantum state is unlimited.

(photon,phonon…) - Boson

玻色子:声子、光子

不可分辨,能级上粒子无限

a l = ω l e α + β E l − 1 a_l = \frac{\omega_l}{e^{\alpha+\beta E_l} -1} al=eα+βEl1ωl

Bose-Einstein statistics: f l = a l ω l = 1 e α + β E l − 1 = 1 e E l − μ k B T − 1 f_l = \frac{a_l}{\omega_l} = \frac{1}{e^{\alpha+\beta E_l}-1} = \frac{1}{e^{ \frac{E_l-\mu}{k_B T} } -1} fl=ωlal=eα+βEl11=ekBTElμ11

c.Femi system

Every particle is unidentified, the number of particles in an quantum state is limited by Pauli repulsive principle.

(electron, proton…) - Fermion

费米子:电子、质子

不可分辨,能级上粒子个数有限

a l = ω l e α + β E l + 1 a_l = \frac{\omega_l}{e^{\alpha+\beta E_l} +1} al=eα+βEl+1ωl

Fermi-Dirac statistics: f l = a l ω l = 1 e α + β E l + 1 = 1 e E l − μ k B T + 1 f_l = \frac{a_l}{\omega_l} = \frac{1}{e^{\alpha+\beta E_l}+1} = \frac{1}{e^{ \frac{E_l-\mu}{k_B T} } +1} fl=ωlal=eα+βEl+11=ekBTElμ+11

α = − μ k B T ,     β = 1 k B t \alpha = - \frac{\mu}{k_B T},\ \ \ \beta = \frac{1}{k_B t} α=kBTμ,   β=kBt1

统计力学

1.2 binding

1.2.1 interatomic bonding

potential between two atoms: U ( R ) = − a R m + b R n U(R)=\frac{-a}{R^m}+\frac{b}{R^n} U(R)=Rma+Rnb

attraction and repulsionA higher binding energy means a higher melting point!

1.2.2 ionic bond

Ionic bond is formed between atoms with large differences in electronegativity. (电负性相差较大)

binding energy: 150~370 kcal/mol

Cohesive Energy in Ionic Crystal

U ( r ) = − N a q 2 4 π ϵ 0 2 r + N B ′ r n U(r) = - \frac{Naq^2}{4\pi \epsilon_0^2 r} +\frac{NB'}{r^n} U(r)=4πϵ02rNaq2+rnNB

Madelung constant: B ′ = ∑ j = 1 2 N − 1 b l j n ,      α = ∑ j = 1 2 N − 1 δ j l j B' = \sum_{j=1}^{2N-1} \frac{b}{l_j^n}, \ \ \ \ \alpha = \sum_{j=1}^{2N-1} \frac{\delta_j}{l_j} B=j=12N1ljnb,    α=j=12N1ljδj

The bigger the cell, the more exactness the Madelung constant is.

在这里插入图片描述

1.2.3Van der Waals bond

1.2.4 Hydrogen bond

1.2.5 Covalent bond

1.2.6 Metallic bond

1.3 crystal structure and typical crystals

1.3.1 crystal structure

basic concept:

  • 无定形晶体 Amorphous (Non-crystalline) Solid: All atoms have order only within a few atomic or molecular dimensions. — random arrangement in a bigger size
  • 长程有序 Crystal: All atoms or molecules in the solid have a regular geometric arrangement or periodicity. — highly ordered
  • 平移对称性 Periodicity: The quality of recurring at regular intervals.
  • 基元 Basis: Repeatable structure units.
  • 格点 Latice site: The dot representing a basis.
  • 晶格 Lattice (Crystal lattice): Geometric pattern of crystal structure

Crystal Structure = Lattice + Basis

primitive vectors 基矢

position vectors 格矢

primitive unit cell 原胞

conventional unit cell 晶胞

Bravais Lattice 布拉伐点阵:The geometric pattern of basis’ arrangement; all points of the lattice is identical.

Bravais lattice only summarizes the geometry of crystals, regardless of what the actual units may be.

The basis consists of the atoms, their spaces and bond angles.

Bravais lattice:

  1. Cubic 立方
  2. Hexahonal 六方
  3. Tetragonal 四方
  4. Trigonal 三方
  5. Monoclinic 单斜
  6. Orthorhomic 正交
  7. Triclinic 三斜

7种bravais晶系,14种bravais点阵,32点群
Bravais Lattice
Catalog of the 14 Bravais lattices classified according to their lattice system Lattice System Point Group Primitive Base-Centered Body-Centered Face-Centered

1.3.2 typical crystal structure

a. important parameters in crystal structure

number of atoms per unit cell: n

the number of nearest neighbors, or Coordination Number: CN 配位数

Atomic Packing Factor: APF 原子堆积因数

A P F = v o l u m e    o f    a t o m s    i n    u n i t    c e l l v o l u m e    o f    u n i t    c e l l APF = \frac{volume\ \ of \ \ atoms \ \ in \ \ unit \ \ cell}{volume \ \ of \ \ unit\ \ cell} APF=volume  of  unit  cellvolume  of  atoms  in  unit  cell

Atomic Radius: 原子半径

b. typical cubic structure of metal

在这里插入图片描述

c. typical crystal structure of semiconductor

在这里插入图片描述
在这里插入图片描述

d. typical crystal structure of Ionic Crystal

在这里插入图片描述

e. typical crystal structure and the Bravais Lattice

在这里插入图片描述

1.4 Reciprocal Lattice and Brillouin Zone

1.4.1 Reciprocal Lattice 倒易点阵

晶体衍射得到的图象(衍射斑点)是倒易点阵的二维投影空间放大。

Fourier series: 傅里叶级数
f ( x + 2 π ) = f ( x ) f(x+2\pi) = f(x) f(x+2π)=f(x)
f ( x ) = a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ n x + b n sin ⁡ n x ) f(x) = \frac{a_0}{2}+\sum_{n=1}^{\infty}(a_n \cos {nx} +b_n \sin{nx}) f(x)=2a0+n=1(ancosnx+bnsinnx)
f ( x ) = ∑ n c n e i n x ,     c n = 1 2 π ∫ − π π f ( x ) e − i n x d x f(x) =\sum_n c_n e^{inx},\ \ \ c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-inx}dx f(x)=ncneinx,   cn=2π1ππf(x)einxdx

Reciprocal lattice (space): 倒易点阵,晶体空间周期性

  1. 如何求倒格矢?
  2. 点阵和倒易点阵的原胞体积关系?
  3. 正格矢和倒格矢晶面的关系?
  4. 互为倒易?
    1D 3D的倒格矢
    互为倒易SC--SC, FCC-BCC, BCC-FCC
    倒格矢

reciprocal space & wave-vector space (k-space): 倒易空间和波矢空间(k空间)

u ( x , t ) = A cos ⁡ ( ω t − k x + ϕ 0 ) u(x,t) = A \cos (\omega t - k x +\phi_0) u(x,t)=Acos(ωtkx+ϕ0)

u ~ ( x , t ) = A ~ e i ( ω t − k x ) \widetilde{u}(x,t) =\widetilde{A} e^{i(\omega t - k x)} u (x,t)=A ei(ωtkx)

k = 2 π λ n ^ ,    b = 2 π a i ^ ,    G = 2 π p a i ^ \mathbf{k} = \frac{2 \pi}{\lambda} \hat n ,\ \ \mathbf{b} = \frac{2\pi}{a} \hat i ,\ \ \mathbf{G} = \frac{2\pi p}{a}\hat i k=λ2πn^,  b=a2πi^,  G=a2πpi^

1.4.2 Crystal Diffraction 晶体衍射

The Bragg Law:将晶体视作平行等距的晶面,将晶体对电磁波的衍射看作一组组晶面对电磁波的反射

2 d sin ⁡ θ = n λ 2d \sin{\theta} = n\lambda 2dsinθ=

Bragg's Law
Bragg's Law
Laue equation

入射和散射的电磁波波程差:
KaTeX parse error: Undefined control sequence: \mathcf at position 35: …cos \theta ' = \̲m̲a̲t̲h̲c̲f̲{d} \cdot (\mat…$

Laue Equ (与布拉格定律等价的晶体衍射关系): k ′ − k = G ,     Δ k = G \mathbf{ k' - k = G, \ \ \ \Delta k = G} kk=G,   Δk=G

2 k ⋅ G = G 2 2 \mathbf{k} \cdot \mathbf{G} = G^2 2kG=G2

Laue Equ
在这里插入图片描述
Ewald structure

晶体衍射的实际过程真实存在的:电子束,样品台(晶体),接收屏上的衍射斑点。

其他的(倒易点阵、Laue Equ、Ewald球)都是虚拟的,但是它们可以帮助分析衍射的过程和原理、以及衍射斑点的位置。

process of diffraction

Ewald Sphere
Ewald structure

1.4.3 Brillouin Zone 布里渊区

以一个格点为原点O,找到原点O与其他格点的连线的中垂面,这些中垂面形成许多封闭区域,即布里渊区。

包围原点且最近的叫做第一布里渊区,此后称为第二、第三,以此类推。

  • 倒易点阵的倒格原点在第一布里渊区的中点。
  • 所有布里渊区具有相同的体积。
  • 每个布里渊区含有且仅有一个格点。
  • 一个布里渊区的体积等于一个原胞的体积。
  • 布里渊区是晶格振动和能带理论中的常用概念。电子在跨越倒格矢中垂面(布里渊区界面)时会发生能量不连续变化。

在这里插入图片描述

在这里插入图片描述

1-st BZ

Brillouin Zone Interface & Crystal diffraction

发生晶体衍射的条件:

  1. 满足布拉格定律;
  2. 满足Laue Equ.;
  3. 波矢 k ⃗ \vec k k 的端点落在布里渊区界面上。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/872698.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

算符优先文法语法分析

1、实验目的及要求 1.1、实验目的 加深对语法分析器工作过程的理解&#xff1b;加强对算符优先分析法实现语法分析程序的掌握&#xff1b;能够采用一种编程语言实现简单的语法分析程序&#xff1b;能够使用自己编写的分析程序对简单的程序段进行语法翻译。 1.2、实验要求 花一…

小龟带你妙写排序之选择排序

选择排序 一. 原理二. 题目三. 思路分析四. 代码 一. 原理 选择排序(Selection-sort)是一种简单直观的排序算法。 工作原理&#xff1a;首先在未排序序列中找到最小&#xff08;大&#xff09;元素&#xff0c;存放到排序序列的起始位置&#xff0c;然后&#xff0c;再从剩余未…

C语言快速回顾(三)

前言 在Android音视频开发中&#xff0c;网上知识点过于零碎&#xff0c;自学起来难度非常大&#xff0c;不过音视频大牛Jhuster提出了《Android 音视频从入门到提高 - 任务列表》&#xff0c;结合我自己的工作学习经历&#xff0c;我准备写一个音视频系列blog。C/C是音视频必…

AtCoder Beginner Contest 314

A.直接模拟就行 #include <bits/stdc.h> using namespace std; const int N 2e510; #define int long long int n,m; string s"3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679";void solve(){cin…

【电池-超级电容器混合存储系统】单机光伏电池-超级电容混合储能系统的能量管理系统(Simulink仿真)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…

Three.js 实现材质边缘通道发光效果

相关API的使用&#xff1a; 1. EffectComposer&#xff08;渲染后处理的通用框架&#xff0c;用于将多个渲染通道&#xff08;pass&#xff09;组合在一起创建特定的视觉效果&#xff09; 2. RenderPass(是用于渲染场景的通道。它将场景和相机作为输入&#xff0c;使用Three.…

MySQL数据库----------安装anaconda---------python与数据库的链接

作者前言 &#x1f382; ✨✨✨✨✨✨&#x1f367;&#x1f367;&#x1f367;&#x1f367;&#x1f367;&#x1f367;&#x1f367;&#x1f382; ​&#x1f382; 作者介绍&#xff1a; &#x1f382;&#x1f382; &#x1f382; &#x1f389;&#x1f389;&#x1f389…

【福建事业单位-数学运算】04计算、最值和几何

【福建事业单位-数学运算】04计算、最值和几何 一、计算1.1 基础计算1.2 数列计算等差数列等比数列 总结 二、最值问题2.1 最不利构造最不利加排列组合 2.2 构造数列 三、几何问题2.1 公式计算类规则图形非规则图形 2.2结论技巧性&#xff08;三角形&#xff09;总结 一、计算 …

【Zabbix安装-5.5版本】

Zabbix安装&#xff08;rpm包安装&#xff09; Index of /zabbix/zabbix/5.5/rhel/8/x86_64/ | 清华大学开源软件镜像站 | Tsinghua Open Source Mirror rpm包链接&#xff1a;https://mirrors.tuna.tsinghua.edu.cn/zabbix/zabbix/5.5/rhel/8/x86_64/zabbix-release-5.5-1.e…

日常BUG——通过命令行创建vue项目报错

&#x1f61c;作 者&#xff1a;是江迪呀✒️本文关键词&#xff1a;日常BUG、BUG、问题分析☀️每日 一言 &#xff1a;存在错误说明你在进步&#xff01; 一、问题描述 在使用vue命令行创建一个vue项目时&#xff0c;出现一下的错误&#xff1a; vue create my…

无涯教程-Perl - ref函数

描述 如果EXPR为引用,则此函数返回真值&#xff1b;如果未提供EXPR,则为$_。返回的实际值还定义了引用所引用的实体的类型。 内置类型为- REFSCALARARRAYHASHCODEGLOBLVALUEIO::Handle 如果使用bless()函数为变量设置了祝福,则将返回新的数据类型。新的数据类型通常将是一个…

homebrew安装

1.国内镜像安装 /bin/zsh -c "$(curl -fsSL https://gitee.com/huwei1024/HomebrewCN/raw/master/Homebrew.sh)"2.选中科大下载源 3.输入密码 4.排错 5.常见错误网址 添加链接描述 6.配置环境变量

texmaker-Latex,设置biber/bibtex

打开texmaker&#xff0c;【选项】–>配置texmaker–>[命令]–>bib(la)tex&#xff0c;然后在该选项里面已有的路径下改为添加biber的路径

【数据结构】树和二叉树的概念及结构

1.树概念及结构 1.1树的概念 树是一种非线性的数据结构&#xff0c;它是由n&#xff08;n>0&#xff09;个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树&#xff0c;也就是说它是根朝上&#xff0c;而叶朝下的。 有一个特殊的结点&#…

【算法基础20-单调栈】

算法原理: 用单调递增栈&#xff0c;当该元素可以入栈的时候&#xff0c;栈顶元素就是它左侧第一个比它小的元素。 以&#xff1a;3 4 2 7 5 为例&#xff0c;过程如下&#xff1a; 动态模拟过程 题目&#xff1a; 给定一个长度为 N 的整数数列&#xff0c;输出每个数左边第一…

Vue.js 生命周期详解

Vue.js 是一款流行的 JavaScript 框架&#xff0c;它采用了组件化的开发方式&#xff0c;使得前端开发更加简单和高效。在 Vue.js 的开发过程中&#xff0c;了解和理解 Vue 的生命周期非常重要。本文将详细介绍 Vue 生命周期的四个阶段&#xff1a;创建、挂载、更新和销毁。 …

C语言快速回顾(一)

前言 在Android音视频开发中&#xff0c;网上知识点过于零碎&#xff0c;自学起来难度非常大&#xff0c;不过音视频大牛Jhuster提出了《Android 音视频从入门到提高 - 任务列表》&#xff0c;结合我自己的工作学习经历&#xff0c;我准备写一个音视频系列blog。C/C是音视频必…

vue3中使用component动态组件常见问题

一. 在vue3中使用动态组件问题警告处理 1. 代码如下 <template><div v-for"(item, index) in navItems" :key"index"><component :is"item.component" :key"item.gameId"></component></div> </te…

【Pytroch】基于支持向量机算法的数据分类预测(Excel可直接替换数据)

【Pytroch】基于支持向量机算法的数据分类预测&#xff08;Excel可直接替换数据&#xff09; 1.模型原理2.数学公式3.文件结构4.Excel数据5.下载地址6.完整代码7.运行结果 1.模型原理 支持向量机&#xff08;Support Vector Machine&#xff0c;SVM&#xff09;是一种强大的监…

【Megatron-DeepSpeed】张量并行工具代码mpu详解(四):张量并行版Embedding层及交叉熵的实现及测试

相关博客 【Megatron-DeepSpeed】张量并行工具代码mpu详解(四)&#xff1a;张量并行版Embedding层及交叉熵的实现及测试 【Megatron-DeepSpeed】张量并行工具代码mpu详解(三)&#xff1a;张量并行层的实现及测试 【Megatron-DeepSpeed】张量并行工具代码mpu详解(一)&#xff1a…