预测知识 | 机器学习预测模型局限性

news2025/1/1 10:25:05

预测知识 | 机器学习预测模型局限性

目录

    • 预测知识 | 机器学习预测模型局限性
      • 问题描述
      • 未来发展
      • 参考资料

问题描述

  • 数据基础设施:要构建模型,必须有数据,且有多来源的大数据。这一切都离不开数据基础设施的建设和发展。

  • 错误数据输入:数据质量是任何分析的基石,如果数据的数据质量很差甚至错误,那么得到的结果也将是不可靠或错误的,正所谓garbage in,garbage out!因此,高质量数据来源是人工智能研究的基础。

  • 数据漂移:这指的是用来决策的数据和模型训练的数据存在很大差异。可想而知,这种情况下模型性能势必不佳。数据飘移包括如下几种,1)协变量漂移,指的是预测因素在两个数据集上分布差异很大;2)先验概率漂移,指的是两个数据集上结局发生率不同;3)概念漂移,指的是协变量和结局之间的关系随时间而变化。因此,要使构建的模型好,一定要解决数据漂移问题,这也是为什么研究论文中,需要开展训练集和测试集比较的原因所在(备注:期望结果是,训练集和测试集不存在差异)。

  • 缺乏外部验证:目前研究文献中所构建的预测模型,绝大多数仅做了内部验证,而缺乏有效的外部验证。原因很简单,数据比较难获取罢了。但是外部验证这个东西,也是一个相对宽泛的概念,其包括了同一个队列非同一时段的时间外部验证,也包括不同队列来源的验证。所以,在数据有限时,不妨试试时间外部验证。

  • 有限的泛化能力:泛化能力指的是模型在应用到新数据集时的表现。尽管现在很多文献,包括顶刊发表的模型,其报告的性能很高,但是泛化能力却不得而知。尤其是模型构建时,受限于研究数据,其仅代表了当时背景下的人群特征,一旦泛化到更一般人群时,其模型预测效果可能大打折扣。

  • 模型黑盒问题:当下算力越来越快,模型越来越复杂。在人工智能研究中,你可能很难找到类似线性回归、决策树这种易于理解的小而简的模型了。事实上正是如此,越来越多研究追求大而复杂的模型,旨在提高预测效果。但是,一个不可避免的问题就是,模型可解释性很差。关于如何解决该问题,也衍生出一门学问,即可解释性机器学习。

在这里插入图片描述

未来发展

机器学习作为人工智能领域的重要分支,在未来发展方面有许多潜力和趋势。

  • 深度学习的进一步发展:深度学习已经在图像识别、语音识别、自然语言处理等领域取得了巨大成功。未来,深度学习模型的架构和算法可能会进一步改进,以提高模型的性能和效率。

  • 迁移学习和增强学习的应用扩展:迁移学习和增强学习是机器学习中的重要技术,用于在不同任务和环境中进行知识迁移和决策优化。未来,这些技术可能会在更广泛的应用领域得到应用,例如自动驾驶、智能机器人等。

  • 解释性机器学习和可解释性人工智能:随着机器学习模型的复杂性增加,解释性机器学习和可解释性人工智能变得越来越重要。未来,研究人员可能会更加关注如何解释和理解机器学习模型的决策过程,以及如何提高模型的可解释性和可信度。

  • 自动化机器学习:自动化机器学习旨在简化机器学习的流程,使非专业人士也能够轻松应用机器学习技术。未来,自动化机器学习工具和平台可能会进一步发展,提供更智能、高效的模型选择、特征工程和超参数调优等功能。

  • 联邦学习和隐私保护:联邦学习是一种分布式学习方法,可以在保护数据隐私的同时进行模型训练与更新。随着对数据隐私的关注增加,联邦学习和隐私保护技术可能会在未来得到更广泛的应用。

  • 结合领域知识的机器学习:结合领域知识和机器学习技术可以提高模型的性能和鲁棒性。未来,研究人员可能会更加关注如何将领域知识融入到机器学习模型中,以提高模型的学习能力和泛化能力。

  • 可持续性和公平性的机器学习:可持续性和公平性是未来机器学习发展中的重要议题。研究人员和从业者可能会更加关注如何构建可持续和公平的机器学习模型,避免模型的偏见和歧视。

需要注意的是,以上只是一些可能的未来发展方向,随着科技的不断进步和应用需求的变化,机器学习的发展将是一个不断演化和创新的过程

参考资料

[1] Reference: Development and validation of predictive models for unplanned hospitalization in the Basque Country: analyzing the variability of non-deterministic algorithms

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/871476.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

「Web3大厂」价值70亿美元的核心竞争力

经过近 5 年的研发和酝酿,Linea 团队在 7 月的巴黎 ETHCC 大会期间宣布了主网 Alpha 的上线,引起了社区的广泛关注。截止 8 月 4 日,据 Dune 数据信息显示,其主网在一周内就涌入了 100 多个生态项目,跨入了超 2 万枚 E…

RabbitMQ基础(2)——发布订阅/fanout模式 topic模式 rabbitmq回调确认 延迟队列(死信)设计

目录 引出点对点(simple)Work queues 一对多发布订阅/fanout模式以登陆验证码为例pom文件导包application.yml文件rabbitmq的配置生产者生成验证码,发送给交换机消费者消费验证码 topic模式配置类增加配置生产者发送信息进行发送控制台查看 rabbitmq回调确认配置类验…

BGP的工作过程及报文

IGP核心:路由的计算。OSPF,ISIS等 BGP核心:路由的传递,不产生路由,只是路由的搬运工,一般用于规模特别大的网络中,只要TCP可达就可以建立邻居。 大型企业分支间采用BGP进行路由传递,不同的分支属于不同的BGP的AS,它们通过BGP进行路由交互。企业与运营商之间可使用BGP进行…

编写一个函数实现n的k次方,使用递归实现

在这个问题中&#xff0c;我们要考虑k的取值正负。 代码实现&#xff1a; #include <stdio.h> double Pow(int n, int k) {if (k > 0)return n * Pow(n, k - 1);else if (k 0)return 1;elsereturn 1.0 / Pow(n, -k); }int main() {int n 0;int k 0;scanf("%d…

期权定价模型系列【4】—期权组合的Delta-Gamma-Vega中性

期权组合的Delta-Gamma-Vega中性 期权组合构建时往往会进行delta中性对冲&#xff0c;在进行中性对冲后&#xff0c;期权组合的delta敞口为0&#xff0c;此时期权组合仍然存在gamma与vega敞口。因此研究期权组合的delta-gamma-vega敞口中性是有必要的。 本文旨在对delta-gamma-…

面向未来的颠覆性技术创新

本篇文章是博主在人工智能等领域学习时&#xff0c;用于个人学习、研究或者欣赏使用&#xff0c;并基于博主对人工智能等领域的一些理解而记录的学习摘录和笔记&#xff0c;若有不当和侵权之处&#xff0c;指出后将会立即改正&#xff0c;还望谅解。文章分类在学习摘录和笔记专…

Leetcode 剑指 Offer II 039. 直方图最大矩形面积

题目难度: 困难 原题链接 今天继续更新 Leetcode 的剑指 Offer&#xff08;专项突击版&#xff09;系列, 大家在公众号 算法精选 里回复 剑指offer2 就能看到该系列当前连载的所有文章了, 记得关注哦~ 题目描述 给定非负整数数组 heights &#xff0c;数组中的数字用来表示柱状…

大脑营行|“福安市华龙教育基金”支持家乡教育事业发展

8月8日&#xff0c;福安市松罗中学举行“福安市华龙教育基金”中考奖学金颁发仪式。福安市松罗乡党委书记钟文、乡长郑仁寿、福安市人民政府教育督导室副科级督导员&#xff08;片区领导&#xff09;陈秦、校长张明亮、各村支部书记、家长代表、受奖学生&#xff0c;校领导班子…

LabVIEW使用图像处理进行交通控制性能分析

LabVIEW使用图像处理进行交通控制性能分析 采用普雷维特、拉普拉斯、索贝尔和任意的空间域方法对存储的图像进行边缘检测&#xff0c;并获取实时图像。然而&#xff0c;对四种不同空间域边缘检测方法的核的性能分析。 以前&#xff0c;空路图像存储在数据库中&#xff0c;道路…

C语言实例_调用SQLITE数据库完成数据增删改查

一、SQLite介绍 SQLite是一种轻量级的关系型数据库管理系统&#xff08;RDBMS&#xff09;&#xff0c;它是一个开源的、零配置的、服务器端的、自包含的、零管理的、事务性的SQL数据库引擎。它被广泛应用于嵌入式设备、移动设备和桌面应用程序等领域。 SQLite的特点包括&…

使用wxPython和PyMuPDF在Python中显示PDF目录的实现

展示如何使用wxPython和PyMuPDF库在Python中选择PDF文件并将目录显示在列表框中。 简介&#xff1a; 在本篇教程中&#xff0c;我们将学习如何使用wxPython和PyMuPDF库在Python中选择PDF文件&#xff0c;并将其目录显示在一个列表框中。这将使用户能够方便地浏览PDF文档的目录…

每天一道leetcode:72. 编辑距离(动态规划困难)

今日份题目&#xff1a; 给你两个单词 word1 和 word2&#xff0c; 请返回将 word1 转换成 word2 所使用的最少操作数 。 你可以对一个单词进行如下三种操作&#xff1a; 插入一个字符 删除一个字符 替换一个字符 示例1 输入&#xff1a;word1 "horse", word…

文心一言 VS 讯飞星火 VS chatgpt (75)-- 算法导论7.2 4题

四、如果用go语言&#xff0c;银行一般会按照交易时间来记录某一账户的交易情况。但是&#xff0c;很多人却喜欢收到的银行对账单是按照支票号码的顺序来排列的。这是因为&#xff0c;人们通常都是按照支票号码的顺序来开出支票的&#xff0c;而商人也通常都是根据支票编号的顺…

centos7升级glibc2.28

1 概述 centos7自带的glibc对于某些软件是太旧的&#xff0c;决定将glibc升级至2.28。 2 安装过程 2.1 下载glibc源码 mkdir -p /opt/third-party && cd /opt/third-party wget http://ftp.gnu.org/gnu/glibc/glibc-2.28.tar.gz tar -xf glibc-2.28.tar.gz cd glibc…

ubuntu下gif动态图片的制作

Gif图片比视频小, 比静态JPG图片形象生动, 更适用于产品展示和步骤演示等。各种各样的gif动图为大家交流提供很大的乐趣. 这里简单介绍ubuntu系统下gif图的制作。 一、工具安装: kazam和ffmpeg kazam是linux下的一款简单但是功能强大的屏幕录制工具. 它可录制声音并选择全屏录…

【Kali】vmware虚拟机三种网络连接方式,ms17-010 , ms08_067的复现

【Kali】vmware虚拟机三种网络连接方式&#xff0c;ms17-010 &#xff0c; ms08_067的复现 nmapmsfconsolevmware虚拟机三种网络连接方式ms17-010ms08_067 kali中对windowsXP、windows 7漏洞利用使用到的工具&#xff1a;nmap、msfconsole。 nmap nmap是一个网络连接端扫描软件…

FL Studio 21最新for Windows-21.1.0.3267中文解锁版安装激活教程及更新日志

FL Studio 21最新版本for Windows 21.1.0.3267中文解锁版是最新强大的音乐制作工具。它可以与所有类型的音乐一起创作出令人惊叹的音乐。它提供了一个非常简单且用户友好的集成开发环境&#xff08;IDE&#xff09;来工作。这个完整的音乐工作站是由比利时公司 Image-Line 开发…

QT编译fabs not declared in this scope

使用MinGW进行编译出现如下情况。 这种查了不少资料都没有解决&#xff0c;因为在使用微软的编译器不存在这个问题。 后面发现只需要在加入头文件 #include <math.h>就可以解决了。

opencv图片灰度二值化

INCLUDEPATH D:\work\opencv_3.4.2_Qt\include LIBS D:\work\opencv_3.4.2_Qt\x86\bin\libopencv_*.dll #include <iostream> #include<opencv2/opencv.hpp> //引入头文件using namespace cv; //命名空间 using namespace std;//opencv这个机器视…

在线吉他调音

先看效果&#xff08;图片没有声&#xff0c;可以下载源码看看&#xff0c;比这更好~&#xff09;&#xff1a; 再看代码&#xff08;查看更多&#xff09;&#xff1a; <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8&quo…