【LangChain】Memory

news2025/2/25 23:09:56

概要

大多数LLM应用都有对话界面。对话的一个重要组成部分是能够引用对话中先前介绍的信息。至少,对话系统应该能够直接访问过去消息的某些窗口。更复杂的系统需要有一个不断更新的世界模型,这使得它能够执行诸如维护有关实体及其关系的信息之类的事情。

我们将这种存储过去交互信息的能力称为“记忆”。 LangChain 提供了许多用于向系统添加记忆的实用程序。这些实用程序可以单独使用,也可以无缝地合并到链中。

记忆系统需要支持两个基本操作:读和写。回想一下,每个链都定义了一些需要某些输入的核心执行逻辑。其中一些输入直接来自用户,但其中一些输入可以来自用户。在给定的运行中,一条链将与其记忆系统交互两次。

  1. 在收到初始用户输入之后但在执行核心逻辑之前,链将从其记忆系统中读取并增加用户输入。

  2. 在执行核心逻辑之后但在返回答案之前,链会将当前运行的输入和输出写入记忆,以便在将来的运行中引用它们。

在这里插入图片描述

将记忆构建到系统中

任何记忆系统中的两个核心设计决策是:

  • 状态如何存储
  • 如何查询状态

存储:聊天消息列表(Storing: List of chat messages)

任何记忆的基础都是所有聊天交互的历史记录。即使这些不全部直接使用,也需要以某种形式存储。

LangChain记忆模块的关键部分之一就是用于存储这些聊天消息的一系列集成,从记忆列表到持久数据库。

聊天消息存储:如何使用聊天消息以及提供的各种集成

查询:聊天消息之上的数据结构和算法(Querying: Data structures and algorithms on top of chat messages)

保留聊天消息列表相当简单。不太直接的是建立在聊天消息之上的数据结构和算法,它们提供了最有用的消息的视图。

一个非常简单的记忆系统可能只返回每次运行的最新消息。稍微复杂一点的记忆系统可能会返回过去 K 条消息的简洁摘要。更复杂的系统可能会从存储的消息中提取实体,并且仅返回有关当前运行中引用的实体的信息。

每个应用程序对于如何查询记忆可能有不同的要求。记忆模块应该可以轻松地开始使用简单的记忆系统,并在需要时编写您自己的自定义系统。

记忆类型:构成LangChain支持的记忆类型的各种数据结构和算法

开始使用

我们来看看LangChain中的记忆到底是什么样子的。在这里,我们将介绍与任意记忆类交互的基础知识。

我们来看看如何在链中使用ConversationBufferMemoryConversationBufferMemory 是一种极其简单的内存形式,它仅将聊天消息列表保存在缓冲区中并将其传递到提示模板中。

from langchain.memory import ConversationBufferMemory

memory = ConversationBufferMemory()
memory.chat_memory.add_user_message("hi!")
memory.chat_memory.add_ai_message("whats up?")

从memory中返回哪些变量(What variables get returned from memory)

在进入链之前,从内存中读取各种变量。它有特定的名称,需要与链期望的变量保持一致。你可以通过调用memory.load_memory_variables({})来查看这些变量是什么。

请注意,我们传入的空字典只是实际变量的占位符。如果您使用的memory类型取决于输入变量,您可能需要传入一些变量。

memory.load_memory_variables({})

结果:

    {'chat_history': "Human: hi!\nAI: whats up?"}

在本例中,您可以看到 load_memory_variables 返回单个key: history。这意味着您的链(可能还有您的提示)期望输入名为:history的key。

通常可以通过memory类上的参数来控制此变量。例如,如果我们希望memory变量key为 chat_history,您可以执行以下操作:

memory = ConversationBufferMemory(memory_key="chat_history")
memory.chat_memory.add_user_message("hi!")
memory.chat_memory.add_ai_message("whats up?")

结果:

    {'chat_history': "Human: hi!\nAI: whats up?"}

控制这些键的参数名称可能因memory类型而异,但重要的是要了解:
(1) 这是可控的,
(2) 如何控制它。

记忆是字符串还是消息列表

最常见的记忆类型之一涉及返回聊天消息列表。这些可以作为单个字符串返回,全部连接在一起(当它们在 LLM 中传递时有用)或 ChatMessages 列表(当传递到 ChatModels 中时有用)。

默认情况下,它们作为单个字符串返回。为了作为消息列表返回,您可以设置 return_messages=True

memory = ConversationBufferMemory(return_messages=True)
memory.chat_memory.add_user_message("hi!")
memory.chat_memory.add_ai_message("whats up?")

结果:

    {'history': [HumanMessage(content='hi!', additional_kwargs={}, example=False),
  AIMessage(content='whats up?', additional_kwargs={}, example=False)]}

哪些key被保存到记忆中(What keys are saved to memory)

通常,链会接收或返回多个输入/输出键。在这些情况下,我们如何知道要将哪些键保存到聊天消息历史记录中?这通常可以通过记忆类型上的 input_keyoutput_key 参数来控制。

如果只有一个输入/输出键,则可以不用写 input_keyoutput_key 参数。但是,如果有多个输入/输出键,那么您必须指定要使用哪个输入/输出键的名称

端到端示例(End to end example)

最后,让我们看一下在链中使用它。我们将使用 LLMChain,并展示如何使用 LLMChatModel
使用LLM的例子:

from langchain.llms import OpenAI
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
from langchain.memory import ConversationBufferMemory


llm = OpenAI(temperature=0)
# 请注意,提示模板中存在“chat_history”
template = """你是一个很好的聊天机器人,正在与人类交谈。

之前的对话:
{chat_history}

新的人类问题: {question}
回复:"""
prompt = PromptTemplate.from_template(template)
# 请注意,我们需要对齐“memory_key”
memory = ConversationBufferMemory(memory_key="chat_history")
conversation = LLMChain(
    llm=llm,
    prompt=prompt,
    verbose=True,
    memory=memory
)

结果:

# 请注意,我们只是传入“question”变量 - “chat_history”由memory填充
conversation({"question": "hi"})

使用ChatModel

from langchain.chat_models import ChatOpenAI
from langchain.prompts import (
    ChatPromptTemplate,
    MessagesPlaceholder,
    SystemMessagePromptTemplate,
    HumanMessagePromptTemplate,
)
from langchain.chains import LLMChain
from langchain.memory import ConversationBufferMemory


llm = ChatOpenAI()
prompt = ChatPromptTemplate(
    messages=[
        SystemMessagePromptTemplate.from_template(
            "你是一个很好的聊天机器人,正在与人类交谈。"
        ),
        # 这里的“variable_name”必须与memory对齐
        MessagesPlaceholder(variable_name="chat_history"),
        HumanMessagePromptTemplate.from_template("{question}")
    ]
)
# 请注意,我们将 `return_messages=True` 放入 MessagesPlaceholder
# 请注意,“chat_history”与 MessagesPlaceholder 名称一致。
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
conversation = LLMChain(
    llm=llm,
    prompt=prompt,
    verbose=True,
    memory=memory
)

结果:

# 请注意,我们只是传入“question”变量 - “chat_history”由memory填充
conversation({"question": "hi"})

总结

本篇讲解 聊天的历史记录: 如何存储、如何查询。

这里是使用ConversationBufferMemory类来完成存储和查询的。
也就是关键下面这段代码:

# 构建一个memory
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
# 关联大模型
conversation = LLMChain(
    llm=llm,
    prompt=prompt,
    verbose=True,
    memory=memory
)
# 查询
# 请注意,我们只是传入“question”变量 - “chat_history”由memory填充
conversation({"question": "hi"})

ChatMessageHistory 公开两种方法和一个属性。
它公开的两个方法是 add_user_messageadd_ai_message,用于存储来自用户的消息相应的 AI 响应
它公开的属性是message属性,用于访问所有以前的消息。


参考地址:

https://python.langchain.com/docs/modules/memory.html

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/869794.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【D3S】REST接口文档自动生成 - 集成smart-doc并同步配置到Torna

目录 一、引言二、maven插件三、smart-doc.json配置四、smart-doc-maven-plugin相关命令五、推送文档到Torna六、通过Maven Profile简化构建 一、引言 D3S(DDD with SpringBoot)为本作者使用DDD过程中开发的框架,目前已可公开查看源码&#…

Object.assign详解

一、Object.assign是什么? Object.assign( )方法用于将所有可枚举属性的值从一个或多个源对象复制到目标对象。它将返回目标对象。 二、用法 Object.assign(target, ...sources) 参数:target ——>目标对象 source ——>源对象 返回值:…

使用生成式 AI 模仿人类行为

推荐:使用 NSDT场景编辑器 助你快速搭建可编辑的3D应用场景 这项研究被 2023 年学习表征国际会议 (ICLR) 接受,该会议致力于推进通常称为深度学习的人工智能分支。 图 1:我们的方法概述。 扩散模型已成为一类强大的生…

【JVM】JVM垃圾收集器

文章目录 什么是JVM垃圾收集器四种垃圾收集器(按类型分)1.串行垃圾收集器(效率低)2.并行垃圾收集器(JDK8默认使用此垃圾回收器)3.CMS(并发)垃圾收集器(只针对老年代垃圾回收的) 什么是JVM垃圾收…

SDR硬件方案

以射频硬件为线索,梳理常见SDR(软件无线电)方案。SDR硬件位于天线和数字信号处理之间,负责把无线电信号数字化,交由主机或者嵌入式系统(FPGA、DSP,MCU)处理。SDR硬件一般包含射频和数…

Python Opencv实践 - 图像缩放

import cv2 as cv import numpy as np import matplotlib.pyplot as pltimg_cat cv.imread("../SampleImages/cat.jpg", cv.IMREAD_COLOR) plt.imshow(img_cat[:,:,::-1])#图像绝对尺寸缩放 #cv.resize(src, dsize[, dst[, fx[, fy[, interpolation]]]]) #指定Size大…

18.3.0:Dynamic Web TWAIN Crack Web 文档扫描 SDK

Dynamic Web TWAIN用于快速部署 Web 应用程序的文档扫描 SDK,文档扫描SDK,,超过 5300 家公司信任 Dynamic Web TWAIN ,因其稳健性和安全性而受到超过 5300 家公司的信赖,Dynamic Web TWAIN 是一款基于浏览器的文档扫描…

微信开发之一键获取标签好友的技术实现

简要描述: 获取标签列表 请求URL: http://域名地址/getContactLabelList 请求方式: POST 请求头Headers: Content-Type:application/jsonAuthorization:login接口返回 参数: 参数名必选…

qtrvsim 使用

qtrvsim 使用 介绍 Qtrvsim 是一个基于 WebAssembly(基于非 js 语言并使得其可以在浏览器中运行)的图形化 RISC-V 微处理器模拟器,给初学者提供了一个实现 RISC-V 架构的渠道。 Developed by the Computer Architectures Education project…

5.2 互联网通信安全

数据参考:CISP官方 目录 一、什么是互联网通信安全二、为什么要关注互联网通信安全三、电子邮件应用安全四、即时通讯应用安全 一、什么是互联网通信安全 1、互联网通信应用的概念 通信的进化史 互联网通信技术(OSI七层模型) 互联网应…

【第二阶段】kotlin的lambda学习

匿名函数lambdm表达式 1.两数相加 fun main() {//匿名函数lambda表达式//两数相加 等价:val addResult:(Int,Int)->String{a,b->"两数相加结果:${ab}"}val addResult{a:Int,b:Int->"两数相加结果${ab}"}println(addResul…

解码Transformer:自注意力机制与编解码器机制详述与代码实现

目录 一、 Transformer的出现背景1.1 技术挑战与先前解决方案的局限性RNN和LSTM卷积神经网络(CNN)在序列处理中的尝试 1.2 自注意力机制的兴起1.3 Transformer的革命性影响 二、自注意力机制2.1 概念和工作原理元素的权重计算加权求和自注意力与传统注意…

没有上司的舞会(树形dp)

思路: (1)每个人有一个开心值,并且人物关系呈树形分布。 (2)我们所求为根部人物及其下属的总开心值,显然存在某种递归关系;注意到要求是不能直系父子同时出现,于是考虑…

数据分析 | 为什么Bagging算法的效果优于单个评估器

1. 回归问题如何降低方差 以随机森林为例,假设随机森林中含有n个弱评估器,由于子样本集的相似性以及使用的是同种模型,因此各模型有近似相等的方差和偏差,因此假设任意弱评估器上输出结果为,方差均为,则随机森林的输出…

PyTorch翻译官网教程-NLP FROM SCRATCH: CLASSIFYING NAMES WITH A CHARACTER-LEVEL RNN

官网链接 NLP From Scratch: Classifying Names with a Character-Level RNN — PyTorch Tutorials 2.0.1cu117 documentation 使用CHARACTER-LEVEL RNN 对名字分类 我们将建立和训练一个基本的字符级递归神经网络(RNN)来分类单词。本教程以及另外两个“from scratch”的自然…

Selenium图片滑块验证码

因为种种原因没能实现愿景的目标,在这里记录一下中间结果,也算是一个收场吧。这篇文章主要是用selenium解决滑块验证码的个别案列。 思路: 用selenium打开浏览器指定网站 将残缺块图片和背景图片下载到本地 对比两张图片的相似地方&#…

openocd调试esp32(通过FT232H)

之前在学习ESP32,其中有一部分课程是学习openocd通过JTAG调试程序的,因为我用的是ESP32-wroom,usb端口没有集成对应的usb转jtag的ft232,查了ESP32相关的资料(JTAG 调试 - ESP32 - — ESP-IDF 编程指南 latest 文档 (es…

【yolov系列:小白yolov7跑数据集建立环境】

首先在github上面获取别人的源码 这个是github的源码包,直接下载解压使用 打开解压后的文件夹应该可以看到这个页面。 进入文件夹的requirements.txt的页面 这篇文章是为了记录自己的环境配置过程,当作笔记使用来看,目前网上各种安装教程都…

微信小程序中键盘弹起输入框自动跳到键盘上方处理

效果展示 键盘未弹起时 键盘弹起后: 实现方式 话就不多说了 我直接贴代码了 原理就是用你点击的输入框的底部 距离顶部的位置 减去屏幕高度除以2,然后设成负值,再将这个值给到最外层相对定位的盒子的top属性,这样就不会出现顶…

linux文件I/O之 fcntl() 函数用法:设置文件的 flags、设置文件锁(记录锁)

头文件和函数声明 #include <unistd.h> #include <fcntl.h> int fcntl(int fd, int cmd, ... /* arg */ ); 函数功能 获取、设置已打开文件的属性 返回值 成功时返回根据 cmd 传递的命令类型的执行结&#xff0c;失败时返回 -1&#xff0c;并设置 errno 为相…