解码Transformer:自注意力机制与编解码器机制详述与代码实现

news2025/2/25 20:35:53

目录

  • 一、 Transformer的出现背景
    • 1.1 技术挑战与先前解决方案的局限性
      • RNN和LSTM
      • 卷积神经网络(CNN)在序列处理中的尝试
    • 1.2 自注意力机制的兴起
    • 1.3 Transformer的革命性影响
  • 二、自注意力机制
    • 2.1 概念和工作原理
      • 元素的权重计算
      • 加权求和
      • 自注意力与传统注意力的区别
      • 计算效率
      • 在Transformer中的应用
      • 跨领域应用
      • 未来趋势和挑战
    • 2.2 计算过程
      • 输入表示
      • 相似度计算
      • 权重分配
      • 加权求和
      • 多头自注意力
  • 三、Transformer的结构
    • 3.1 编码器(Encoder)
      • 3.1.1 自注意力层
      • 3.1.2 前馈神经网络
      • 3.1.3 规范化层
      • 3.1.4 残差连接
      • 3.1.5 编码器的完整结构
    • 3.2 解码器(Decoder)
      • 3.2.1 自注意力层
      • 3.2.2 编码器-解码器注意力层
      • 3.2.3 前馈神经网络
      • 3.2.4 规范化层和残差连接
      • 3.2.5 解码器的完整结构
  • 四、以Transformer为基础的各类模型
    • 4.1 BERT(Bidirectional Encoder Representations from Transformers)
      • 主要特点
    • 4.2 GPT(Generative Pre-trained Transformer)
      • 主要特点
    • 4.3 Transformer-XL(Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context)
      • 主要特点
    • 4.4 T5(Text-to-Text Transfer Transformer)
      • 主要特点
    • 4.5 XLNet
      • 主要特点
    • 4.6 DistilBERT
      • 主要特点
    • 4.7 ALBERT(A Lite BERT)
      • 主要特点
  • 五、总结

本文全面探讨了Transformer及其衍生模型,深入分析了自注意力机制、编码器和解码器结构,并列举了其编码实现加深理解,最后列出基于Transformer的各类模型如BERT、GPT等。文章旨在深入解释Transformer的工作原理,并展示其在人工智能领域的广泛影响。

作者 TechLead,拥有10+年互联网服务架构、AI产品研发经验、团队管理经验,同济本复旦硕,复旦机器人智能实验室成员,阿里云认证的资深架构师,项目管理专业人士,上亿营收AI产品研发负责人

一、 Transformer的出现背景

file
Transformer的出现标志着自然语言处理领域的一个里程碑。以下将从技术挑战、自注意力机制的兴起,以及Transformer对整个领域的影响三个方面来全面阐述其背景。

1.1 技术挑战与先前解决方案的局限性

RNN和LSTM

早期的序列模型,如RNN和LSTM,虽然在某些场景下表现良好,但在实际操作中遇到了许多挑战:

  • 计算效率:由于RNN的递归结构,它必须逐个处理序列中的元素,从而使计算无法并行化。
  • 长距离依赖问题:RNN难以捕获序列中的长距离依赖,而LSTM虽有所改善,但仍不完美。

卷积神经网络(CNN)在序列处理中的尝试

卷积神经网络(CNN)通过使用多层卷积可以捕获局部依赖,并在某些方面改善了长距离依赖的捕获。但是,CNN的固定卷积窗口大小限制了其能捕获的依赖范围,并且对全局依赖的处理不够灵活。

1.2 自注意力机制的兴起

自注意力机制解决了上述挑战:

  • 并行化计算:通过同时观察序列中的所有元素,自注意力机制允许模型并行处理整个序列。
  • 捕获长距离依赖:自注意力机制能有效捕获序列中的长距离依赖,无论距离有多远。

这一机制的引入,让Transformer模型成为了一项技术突破。

1.3 Transformer的革命性影响

Transformer的出现对整个领域产生了深远影响:

  • 设立新标准:在多个NLP任务中,Transformer都设立了新的性能基准。
  • 推动新研究和应用:Transformer的结构推动了许多新的研究方向和实际应用,如BERT、GPT等先进模型的诞生。
  • 跨领域影响:除了自然语言处理,Transformer还对其他领域如生物信息学、图像处理等产生了影响。

二、自注意力机制

file

2.1 概念和工作原理

自注意力机制是一种能够捕捉序列内部元素之间关系的技术。它计算序列中每个元素与其他元素的相似度,从而实现全局依赖关系的捕捉。

  • 权重计算:通过计算序列中每个元素之间的相似性,为每个元素分配不同的权重。
  • 全局依赖捕获:能够捕获序列中任意距离的依赖关系,突破了先前模型的局限。

元素的权重计算

file

  • Query、Key、Value结构:序列中的每个元素被表示为Query、Key、Value三个部分。
  • 相似度度量:使用Query和Key的点积计算元素间的相似度。
  • 权重分配:通过Softmax函数将相似度转换为权重。

例如,考虑一个元素的权重计算:

import torch
import torch.nn.functional as F

# Query, Key
query = torch.tensor([1, 0.5])
key = torch.tensor([[1, 0], [0, 1]])

# 相似度计算
similarity = query.matmul(key)

# 权重分配
weights = F.softmax(similarity, dim=-1)
# 输出:tensor([0.7311, 0.2689])

加权求和

自注意力机制利用计算的权重对Value进行加权求和,从而得到每个元素的新表示。

value = torch.tensor([[1, 2], [3, 4]])
output = weights.matmul(value)
# 输出:tensor([1.7311, 2.7311])

自注意力与传统注意力的区别

自注意力机制与传统注意力的主要区别在于:

  • 自我参照:自注意力机制是序列自身对自身的注意,而不是对外部序列。
  • 全局依赖捕获:不受局部窗口限制,能捕获序列中任意距离的依赖关系。

计算效率

自注意力机制能够并行处理整个序列,不受序列长度的限制,从而实现了显著的计算效率。

  • 并行化优势:自注意力计算可同时进行,提高了训练和推理速度。

在Transformer中的应用

在Transformer中,自注意力机制是关键组成部分:

  • 多头注意力:通过多头注意力,模型能同时学习不同的依赖关系,增强了模型的表现力。
  • 权重可视化:自注意力权重可被用来解释模型的工作方式,增加了可解释性。

跨领域应用

自注意力机制的影响远超自然语言处理:

  • 图像处理:在图像分割和识别等任务中的应用。
  • 语音识别:帮助捕获语音信号中的时间依赖。

未来趋势和挑战

虽然自注意力取得了卓越的成功,但仍有研究空间:

  • 计算和存储需求:高复杂度带来了内存和计算挑战。
  • 可解释性和理论理解:对于注意力机制的深入理解还有待进一步探索。

2.2 计算过程

file

输入表示

自注意力机制的输入是一个序列,通常由一组词向量或其他元素组成。这些元素会被分别转换为Query、Key、Value三部分。

import torch.nn as nn

embedding_dim = 64
query_layer = nn.Linear(embedding_dim, embedding_dim)
key_layer = nn.Linear(embedding_dim, embedding_dim)
value_layer = nn.Linear(embedding_dim, embedding_dim)

相似度计算

通过Query和Key的点积计算,得到各元素之间的相似度矩阵。

import torch

embedding_dim = 64

# 假设一个序列包含三个元素
sequence = torch.rand(3, embedding_dim)

query = query_layer(sequence)
key = key_layer(sequence)
value = value_layer(sequence)

def similarity(query, key):
    return torch.matmul(query, key.transpose(-2, -1)) / (embedding_dim ** 0.5)

权重分配

将相似度矩阵归一化为权重。

def compute_weights(similarity_matrix):
    return torch.nn.functional.softmax(similarity_matrix, dim=-1)

加权求和

利用权重矩阵对Value进行加权求和,得到输出。

def weighted_sum(weights, value):
    return torch.matmul(weights, value)

多头自注意力

在实际应用中,通常使用多头注意力来捕获序列中的多方面信息。

class MultiHeadAttention(nn.Module):
    def __init__(self, embedding_dim, num_heads):
        super(MultiHeadAttention, self).__init__()
        self.num_heads = num_heads
        self.head_dim = embedding_dim // num_heads
        
        self.query_layer = nn.Linear(embedding_dim, embedding_dim)
        self.key_layer = nn.Linear(embedding_dim, embedding_dim)
        self.value_layer = nn.Linear(embedding_dim, embedding_dim)
        self.fc_out = nn.Linear(embedding_dim, embedding_dim)

    def forward(self, query, key, value):
        N = query.shape[0]
        query_len, key_len, value_len = query.shape[1], key.shape[1], value.shape[1]

        # 拆分多个头
        queries = self.query_layer(query).view(N, query_len, self.num_heads, self.head_dim)
        keys = self.key_layer(key).view(N, key_len, self.num_heads, self.head_dim)
        values = self.value_layer(value).view(N, value_len, self.num_heads, self.head_dim)

        # 相似度计算
        similarity_matrix = torch.einsum("nqhd,nkhd->nhqk", [queries, keys]) / (self.head_dim ** 0.5)

        # 权重分配
        weights = torch.nn.functional.softmax(similarity_matrix, dim=-1)

        # 加权求和
        attention = torch.einsum("nhql,nlhd->nqhd", [weights, values])

        # 串联多个头的输出
        attention = attention.permute(0, 2, 1, 3).contiguous().view(N, query_len, embedding_dim)

        # 通过线性层整合输出
        output = self.fc_out(attention)

        return output


三、Transformer的结构

file

3.1 编码器(Encoder)

file
编码器是Transformer的核心组成部分之一,它的主要任务是理解和处理输入数据。编码器通过组合自注意力机制、前馈神经网络、规范化层和残差连接,构建了一个强大的序列到序列的映射工具。自注意力机制使得模型能够捕获序列内部的复杂关系,前馈网络则提供了非线性计算能力。规范化层和残差连接则有助于稳定训练过程。
以下是编码器的各个组件和它们的详细描述。

3.1.1 自注意力层

编码器的第一部分是自注意力层。如之前所述,自注意力机制使模型能够关注输入序列中的所有位置,并根据这些信息来编码每个位置。

class SelfAttentionLayer(nn.Module):
    def __init__(self, embedding_dim, num_heads):
        super(SelfAttentionLayer, self).__init__()
        self.multi_head_attention = MultiHeadAttention(embedding_dim, num_heads)
    
    def forward(self, x):
        return self.multi_head_attention(x, x, x)

3.1.2 前馈神经网络

自注意力层后,编码器包括一个前馈神经网络(Feed-Forward Neural Network, FFNN)。这个网络由两个线性层和一个激活函数组成。

class FeedForwardLayer(nn.Module):
    def __init__(self, embedding_dim, ff_dim):
        super(FeedForwardLayer, self).__init__()
        self.fc1 = nn.Linear(embedding_dim, ff_dim)
        self.fc2 = nn.Linear(ff_dim, embedding_dim)
        self.relu = nn.ReLU()
    
    def forward(self, x):
        return self.fc2(self.relu(self.fc1(x)))

3.1.3 规范化层

为了稳定训练和加快收敛速度,每个自注意力层和前馈层后面都有一个规范化层(Layer Normalization)。

layer_norm = nn.LayerNorm(embedding_dim)

3.1.4 残差连接

Transformer还使用了残差连接,使得每一层的输出都与输入相加。这有助于防止梯度消失和爆炸。

output = layer_norm(self_attention(x) + x)
output = layer_norm(feed_forward(output) + output)

3.1.5 编码器的完整结构

最终的编码器由N个这样的层堆叠而成。

class Encoder(nn.Module):
    def __init__(self, num_layers, embedding_dim, num_heads, ff_dim):
        super(Encoder, self).__init__()
        self.layers = nn.ModuleList([
            nn.Sequential(
                SelfAttentionLayer(embedding_dim, num_heads),
                nn.LayerNorm(embedding_dim),
                FeedForwardLayer(embedding_dim, ff_dim),
                nn.LayerNorm(embedding_dim)
            )
            for _ in range(num_layers)
        ])

    def forward(self, x):
        for layer in self.layers:
            x = layer(x)
        return x

3.2 解码器(Decoder)

file
解码器负责根据编码器的输出和先前生成的部分输出序列生成目标序列。解码器采用了与编码器类似的结构,但增加了掩码自注意力层和编码器-解码器注意力层,以生成目标序列。掩码确保解码器仅使用先前的位置生成每个位置的输出。编码器-解码器注意力层则使解码器能够使用编码器的输出。通过这种结构,解码器能够生成符合上下文和源序列信息的目标序列,为许多复杂的序列生成任务提供了强大的解决方案。
下面是解码器的主要组成部分和它们的工作原理。

3.2.1 自注意力层

解码器的第一部分是掩码自注意力层。该层与编码器中的自注意力层相似,但是添加了一个掩码,以防止位置关注其后的位置。

def mask_future_positions(size):
    mask = (torch.triu(torch.ones(size, size)) == 1).transpose(0, 1)
    return mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))

mask = mask_future_positions(sequence_length)

3.2.2 编码器-解码器注意力层

解码器还包括一个编码器-解码器注意力层,允许解码器关注编码器的输出。

class EncoderDecoderAttention(nn.Module):
    def __init__(self, embedding_dim, num_heads):
        super(EncoderDecoderAttention, self).__init__()
        self.multi_head_attention = MultiHeadAttention(embedding_dim, num_heads)
    
    def forward(self, queries, keys, values):
        return self.multi_head_attention(queries, keys, values)

3.2.3 前馈神经网络

解码器也有一个前馈神经网络,结构与编码器中的前馈神经网络相同。

3.2.4 规范化层和残差连接

这些组件也与编码器中的相同,并在每个子层之后使用。

3.2.5 解码器的完整结构

解码器由自注意力层、编码器-解码器注意力层、前馈神经网络、规范化层和残差连接组成,通常包括N个这样的层。

class Decoder(nn.Module):
    def __init__(self, num_layers, embedding_dim, num_heads, ff_dim):
        super(Decoder, self).__init__()
        self.layers = nn.ModuleList([
            nn.Sequential(
                SelfAttentionLayer(embedding_dim, num_heads, mask=mask),
                nn.LayerNorm(embedding_dim),
                EncoderDecoderAttention(embedding_dim, num_heads),
                nn.LayerNorm(embedding_dim),
                FeedForwardLayer(embedding_dim, ff_dim),
                nn.LayerNorm(embedding_dim)
            )
            for _ in range(num_layers)
        ])

    def forward(self, x, encoder_output):
        for layer in self.layers:
            x = layer(x, encoder_output)
        return x

四、以Transformer为基础的各类模型

file

以Transformer为基础的模型不断涌现,为各种NLP和其他序列处理任务提供了强大的工具。从生成文本到理解上下文,这些模型都具有不同的优势和特点,共同推动了自然语言处理领域的快速发展。这些模型的共同之处在于,它们都采用了原始Transformer的核心概念,并在此基础上做了各种创新和改进。未来可期望更多以Transformer为基础的模型不断涌现,进一步拓宽其应用范围和影响力。

4.1 BERT(Bidirectional Encoder Representations from Transformers)

BERT是一种基于Transformer编码器的模型,用于生成上下文相关的词嵌入。不同于传统的词嵌入方法,BERT能够理解单词在句子中的具体含义。

主要特点

  • 双向训练,捕获上下文信息
  • 大量预训练,适用于多种下游任务

4.2 GPT(Generative Pre-trained Transformer)

与BERT不同,GPT侧重于使用Transformer解码器生成文本。GPT被预训练为语言模型,并可微调用于各种生成任务。

主要特点

  • 从左到右生成文本
  • 在多种生成任务上具有很高的灵活性

4.3 Transformer-XL(Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context)

Transformer-XL通过引入可重复使用的记忆机制,解决了原始Transformer模型的上下文长度限制问题。

主要特点

  • 更长的上下文依赖
  • 记忆机制提高效率

4.4 T5(Text-to-Text Transfer Transformer)

T5模型将所有NLP任务都视为文本到文本的转换问题。这种统一的框架使得在不同的任务之间转换变得非常容易。

主要特点

  • 通用性,适用于多种NLP任务
  • 简化了任务特定架构的需求

4.5 XLNet

XLNet是一种通用自回归预训练模型,结合了BERT的双向能力和GPT的自回归优势。

主要特点

  • 双向和自回归结合
  • 提供了一种有效的预训练方法

4.6 DistilBERT

DistilBERT是BERT模型的轻量级版本,保留了大部分性能,但模型大小显著减小。

主要特点

  • 更少的参数和计算量
  • 适用于资源有限的场景

4.7 ALBERT(A Lite BERT)

ALBERT是对BERT的另一种优化,减少了参数数量,同时改善了训练速度和模型性能。

主要特点

  • 参数共享
  • 更快的训练速度

五、总结

Transformer自从被引入以来,已经深刻改变了自然语言处理和许多其他序列处理任务的面貌。通过其独特的自注意力机制,Transformer克服了以前模型的许多局限性,实现了更高的并行化和更灵活的依赖捕获。

在本文中,我们详细探讨了Transformer的以下方面:

  1. 出现背景:了解了Transformer是如何从RNN和CNN的限制中诞生的,以及它是如何通过自注意力机制来处理序列的。
  2. 自注意力机制:详细解释了自注意力机制的计算过程,以及如何允许模型在不同位置之间建立依赖关系。
  3. Transformer的结构:深入了解了Transformer的编码器和解码器的结构,以及各个组件如何协同工作。
  4. 基于Transformer的各类模型:探讨了一系列以Transformer为基础的模型,如BERT、GPT、T5等,了解了它们的特点和应用。

Transformer不仅推动了自然语言处理领域的研究和应用,还在其他领域,如生物信息学、图像分析等,展示了其潜力。现代许多最先进的模型都以Transformer为基础,利用其灵活、高效的结构解决了先前难以解决的问题。

今后,我们可以期待Transformer和其衍生模型继续在更广泛的领域中扮演重要角色,不断创新和推动人工智能领域的发展。


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/869770.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

没有上司的舞会(树形dp)

思路: (1)每个人有一个开心值,并且人物关系呈树形分布。 (2)我们所求为根部人物及其下属的总开心值,显然存在某种递归关系;注意到要求是不能直系父子同时出现,于是考虑…

数据分析 | 为什么Bagging算法的效果优于单个评估器

1. 回归问题如何降低方差 以随机森林为例,假设随机森林中含有n个弱评估器,由于子样本集的相似性以及使用的是同种模型,因此各模型有近似相等的方差和偏差,因此假设任意弱评估器上输出结果为,方差均为,则随机森林的输出…

PyTorch翻译官网教程-NLP FROM SCRATCH: CLASSIFYING NAMES WITH A CHARACTER-LEVEL RNN

官网链接 NLP From Scratch: Classifying Names with a Character-Level RNN — PyTorch Tutorials 2.0.1cu117 documentation 使用CHARACTER-LEVEL RNN 对名字分类 我们将建立和训练一个基本的字符级递归神经网络(RNN)来分类单词。本教程以及另外两个“from scratch”的自然…

Selenium图片滑块验证码

因为种种原因没能实现愿景的目标,在这里记录一下中间结果,也算是一个收场吧。这篇文章主要是用selenium解决滑块验证码的个别案列。 思路: 用selenium打开浏览器指定网站 将残缺块图片和背景图片下载到本地 对比两张图片的相似地方&#…

openocd调试esp32(通过FT232H)

之前在学习ESP32,其中有一部分课程是学习openocd通过JTAG调试程序的,因为我用的是ESP32-wroom,usb端口没有集成对应的usb转jtag的ft232,查了ESP32相关的资料(JTAG 调试 - ESP32 - — ESP-IDF 编程指南 latest 文档 (es…

【yolov系列:小白yolov7跑数据集建立环境】

首先在github上面获取别人的源码 这个是github的源码包,直接下载解压使用 打开解压后的文件夹应该可以看到这个页面。 进入文件夹的requirements.txt的页面 这篇文章是为了记录自己的环境配置过程,当作笔记使用来看,目前网上各种安装教程都…

微信小程序中键盘弹起输入框自动跳到键盘上方处理

效果展示 键盘未弹起时 键盘弹起后: 实现方式 话就不多说了 我直接贴代码了 原理就是用你点击的输入框的底部 距离顶部的位置 减去屏幕高度除以2,然后设成负值,再将这个值给到最外层相对定位的盒子的top属性,这样就不会出现顶…

linux文件I/O之 fcntl() 函数用法:设置文件的 flags、设置文件锁(记录锁)

头文件和函数声明 #include <unistd.h> #include <fcntl.h> int fcntl(int fd, int cmd, ... /* arg */ ); 函数功能 获取、设置已打开文件的属性 返回值 成功时返回根据 cmd 传递的命令类型的执行结&#xff0c;失败时返回 -1&#xff0c;并设置 errno 为相…

山西电力市场日前价格预测【2023-08-12】

日前价格预测 预测明日&#xff08;2023-08-12&#xff09;山西电力市场全天平均日前电价为330.52元/MWh。其中&#xff0c;最高日前电价为387.00元/MWh&#xff0c;预计出现在19: 45。最低日前电价为278.05元/MWh&#xff0c;预计出现在13: 00。 价差方向预测 1&#xff1a; 实…

【Bert101】最先进的 NLP 模型解释【02/4】

0 什么是伯特&#xff1f; BERT是来自【Bidirectional Encoder Representations from Transformers】变压器的双向编码器表示的缩写&#xff0c;是用于自然语言处理的机器学习&#xff08;ML&#xff09;模型。它由Google AI Language的研究人员于2018年开发&#xff0c;可作为…

最强自动化测试框架Playwright(9)- 下载文件

对于页面下载的每个附件&#xff0c;都会发出 page.on&#xff08;“download”&#xff09; 事件。 下载开始后&#xff0c;将发出下载事件。下载完成后&#xff0c;下载路径将变为可用 所有这些附件都下载到一个临时文件夹中。可以使用事件中的下载对象获取下载 URL、文件系…

BClinux8.6 制作openssh9.2p2 rpm升级包和升级实战

一、背景说明 BClinux8.6 安装的openssh 版本为9.3p1&#xff0c;经绿盟扫描&#xff0c;存在高危漏洞&#xff0c;需要升级到最新。 OpenSSH 命令注入漏洞(CVE-2020-15778) OpenSSH 安全漏洞(CVE-2023-38408) 目前官网只提供编译安装包&#xff0c;而BClinux8.6 为rpm方…

上市公司绿色发展专题:重污染行业企业名单与绿色创新数据

数据简介&#xff1a;上市公司&#xff0c;尤其是重污染行业上市公司实现绿色发展&#xff0c;广泛开展绿色创新&#xff0c;是我国高质量发展的必然要求&#xff0c;受到了来自学界与各级ZF的诸多关注。现有研究中对上市公司绿色发展问题的研究发现&#xff0c;重污染行业上市…

剑指offer14-I.剪绳子

昨天写的那道题是数组中除了一个元素外其余元素的乘积&#xff0c;这道题自然就想到了把一个数分成两个的和&#xff0c;然后积就是这两个数的积&#xff0c;而这两个数中的每个数又可以分成两个数&#xff0c;所以可以用动态规划的方法&#xff0c;dp[i] dp[j]*dp[i-j]。但是…

ChatGPT应用在律师行业需谨慎,南非有律师被它的幻觉误导了!

ChatGPT自去年以来大受欢迎&#xff0c;没想到它这么快会出现在法庭上。 最近&#xff0c;南非约翰内斯堡地区法院审理一个案件时&#xff0c;有律师因为使用ChatGPT生成的虚假参考资料而受到指责。[1] 根据《星期日泰晤士报》的报道&#xff0c;法院判决认为&#xff0c;该名…

pgsql checkpoint机制(1)

检查点触发时机 检查点间隔时间由checkpoint_timeout设置pg_xlog中wall段文件总大小超过参数max_WAL_size的值postgresql服务器在smart或fast模式下关闭手动checkpoint 为什么需要检查点&#xff1f; 定期保持修改过的数据块作为实例恢复时起始位置&#xff08;问题&#xf…

6.利用matlab完成 符号矩阵的秩和 符号方阵的逆矩阵和行列式 (matlab程序)

1.简述 利用M文件建立矩阵 对于比较大且比较复杂的矩阵&#xff0c;可以为它专门建立一个M文件。下面通过一个简单例子来说明如何利用M文件创建矩阵。 例2-2 利用M文件建立MYMAT矩阵。(1) 启动有关编辑程序或MATLAB文本编辑器&#xff0c;并输入待建矩阵&#xff1a;(2) 把…

Python爬虫——requests_cookie登陆古诗文网

寻找登陆需要的参数 __VIEWSTATE:aiMG0UXAfCzak10C7436ZC/RXoZbM2lDlX1iU/4wjjdUNsW8QUs6W2/3M6XIKagQZrC7ooD8Upj8uCnpQMXjDAp6fS/NM2nGhnKO0KOSXfT3jGHhJAOBouMI3QnlpJCQKPXfVDJPYwh169MGLFC6trY __VIEWSTATEGENERATOR: C93BE1AE from: http://so.gushiwen.cn/user/collect.…

springboot异步任务

在Service类声明一个注解Async作为异步方法的标识 package com.qf.sping09test.service;import org.springframework.scheduling.annotation.Async; import org.springframework.stereotype.Service;Service public class AsyncService {//告诉spring这是一个异步的方法Asyncp…

Day 28 C++ (映射)map 容器 / multimap 容器 (多重映射)

文章目录 map (映射)定义注意优点 map构造和赋值构造赋值示例 map大小和交换函数原型示例 map插入和删除函数原型四种插入方式示例 map查找和统计函数原型示例 map容器排序 multimap 容器 (多重映射)定义特点和map的区别示例 map (映射) 定义 C中的map是一种关联容器&#xf…