【Opencv入门到项目实战】(九):项目实战|信用卡识别|模板匹配|(附代码解读)

news2025/2/9 1:40:50

所有订阅专栏的同学可以私信博主获取源码文件

文章目录

  • 0.背景介绍
  • 1.模板处理
    • 1.1模板读取
    • 1.2预处理
    • 1.3轮廓计算
  • 2.输入图像处理
    • 2.1图形读取
    • 2.2预处理
    • 2.3轮廓计算
    • 2.4计算匹配得分
  • 3.小结

0.背景介绍

接下来我们正式进入项目实战部分,这一章要介绍的是一个信用卡号识别的项目。首先,我们来明确一下研究的问题,假设我们有一张信用卡如下所示,我们要做的就是识别出这上面卡号信息,然后会输出一个序列,第一个序列就是4020,第二序列是3400,第三个序列0234,第四个序列5678,也就是说此时我们不光是把这个数输出来,我们还要知道对应的位置。

image-20230804161241495

之前我们已经介绍了Opencv的各种图像基本操作,例如形态学操作、模板匹配、轮廓检测,我们现在要做的就是把这些方法全部应用到一起,相当于把我们以前所学的知识点全部穿插到咱们这个项目当中了。

我们先来看一下要完成这个项目的基本思路。

思考一: 首先最核心的问题是我们如何判断一个数字是几呢?这里我们要用到模板匹配

假设我们有一个数字模板如下:

image-20230804162917771

现在我们要做的就是将信用卡上每一个数字和模板上的数字进行匹配,看一下它与模板上的哪一个数字最接近,我们就把这个数字输出。因此我们第一步需要得到一个与目标信用卡数字字体非常接近的一个模板。

思考二: 如何每一个数字单独拿出来?

我们之前介绍轮廓检测,但是直接得到的轮廓各个数字之间非常不规则,我们可以利用轮廓的外接矩形或者外接圆来进行操作。

总体就是分为以上两个步骤,具体过程我们还需要对图像进行各种预处理操作,我们在后面在代码中细致介绍。

以下是项目的主要框架,想要源码的可以私信我获取。

image-20230804160702361

1.模板处理

1.1模板读取

首先我们将目标模板读取

# 导入工具包
from imutils import contours
import numpy as np
import argparse
import cv2
import myutils


# 指定模板和目标图像位置
target = 'images/credit_card_02.png'
template = 'images/ocr_a_reference.png'

# 定义图像展示函数
def cv_show(name,img):
	cv2.imshow(name, img)
	cv2.waitKey(0)
	cv2.destroyAllWindows()

# 读取模板图像
img = cv2.imread(template)

cv_show(im)

image-20230804164820268

1.2预处理

接下来对模板进行预处理,转换为二值图,因为我们后续轮廓检测时只接受二值图输入。

# 灰度图
ref = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
cv_show('ref',ref)

# 二值图像
ref = cv2.threshold(ref, 10, 255, cv2.THRESH_BINARY_INV)[1] #阈值设为10
cv_show('ref',ref)

image-20230804181757920

现在得到了二值图像之后我们就可以进行图像轮廓检测了。

1.3轮廓计算

在这里我们使用cv2.findContours()函数,其只接收一个二值图像,cv2.RETR_EXTERNAL只检测外轮廓,cv2.CHAIN_APPROX_SIMPLE只保留终点坐标。返回参数我们只需要用refCnts即可,它返回的是我们的轮廓信息

# 计算轮廓

#返回的list中每个元素都是图像中的一个轮廓

ref_, refCnts, hierarchy = cv2.findContours(ref.copy(), cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)

cv2.drawContours(img,refCnts,-1,(0,0,255),3) # -1表示绘制所有轮廓
cv_show('img',img) #展示轮廓


image-20230804181831455

现在我们得到了0-9每个数字的外轮廓信息,但是直接返回的轮廓顺序不一定是按照我们模板从左到右排序的,接下来我们需要对轮廓进行排序,让它按照从左到右0,1,2,3,4…9的顺序排列,这里我们定义了函数,sort_contours,我们直接根据我们的坐标排序,就可以得到按照0-9排列的轮廓

import cv2

def sort_contours(cnts, method="left-to-right"):
    reverse = False
    i = 0

    if method == "right-to-left" or method == "bottom-to-top":
        reverse = True

    if method == "top-to-bottom" or method == "bottom-to-top":
        i = 1
    boundingBoxes = [cv2.boundingRect(c) for c in cnts] #计算外接矩形,用一个最小的矩形,返回x,y,h,w,分别表示坐标和高宽
    (cnts, boundingBoxes) = zip(*sorted(zip(cnts, boundingBoxes),
                                        key=lambda b: b[1][i], reverse=reverse))#排序

    return cnts, boundingBoxes

现在得到了排序好后的轮廓,接下来我们需要把模板中每个数字轮廓单独拿出来放到一个字典中方便我们后续进行匹配,通过cv.boundingRect()得到轮廓坐标和长宽信息,然后利用我们之前的ROI读取方法即可,最后我们更改一下轮廓的大小。

refCnts = sort_contours(refCnts, method="left-to-right")[0] #排序,从左到右
digits = {}

# 遍历每一个轮廓
for (i, c) in enumerate(refCnts):
	# 计算外接矩形并且resize成合适大小
	(x, y, w, h) = cv2.boundingRect(c)
	roi = ref[y:y + h, x:x + w]
	roi = cv2.resize(roi, (57, 88))

	# 每一个数字对应每一个模板
	digits[i] = roi

接下来我们就得到了每个数字模板的轮廓信息,并保留在digits字典中,接下来我们需要对输入图像进行处理。

2.输入图像处理

2.1图形读取

这里我们初始化了两个卷积核,分别为9×35×5的,这里大家可以根据自己的任务更换别的卷积核大小。然后我们把目标图像读取进来并转换为灰度图

# 初始化卷积核
rectKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (9, 3))
sqKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))


#读取输入图像,预处理

image = cv2.imread(target)
cv_show('image',image)
image = myutils.resize(image, width=300)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # 转换为灰度图
cv_show('gray',gray)

image-20230804182424417

2.2预处理

得到灰度图之后,我们需要进行更细节的预处理,因为我们想要检测的是银行卡号,我们关注的是这样的数字部分,也就是更亮的区域,因此我们在这里进行了礼帽操作,来突出我们想要研究的信息,在实际应用中,可以根据具体想要研究的任务来选择其他的处理方式

#礼帽操作,突出更明亮的区域
tophat = cv2.morphologyEx(gray, cv2.MORPH_TOPHAT, rectKernel) 
cv_show('tophat',tophat) 

image-20230804182553963

接下来我们进一步的利用sobel算子来进行边缘检测

gradX = cv2.Sobel(tophat, ddepth=cv2.CV_32F, dx=1, dy=0, #ksize=-1相当于用3*3的
	ksize=-1) # 使用Sobel算子处理


gradX = np.absolute(gradX)
(minVal, maxVal) = (np.min(gradX), np.max(gradX))
gradX = (255 * ((gradX - minVal) / (maxVal - minVal))) # 归一化处理
gradX = gradX.astype("uint8")


print (np.array(gradX).shape)
cv_show('gradX',gradX)

image-20230804182603478

得到边缘之后,我们希望将这些数字分块放到一起,每四个数字为一个小方块。我们可以利用之前介绍过的先膨胀,再腐蚀的操作。

#通过闭操作(先膨胀,再腐蚀)将数字连在一起
gradX = cv2.morphologyEx(gradX, cv2.MORPH_CLOSE, rectKernel) 
cv_show('gradX',gradX)

#二值化处理:THRESH_OTSU会自动寻找合适的阈值,适合双峰,需把阈值参数设置为0
thresh = cv2.threshold(gradX, 0, 255,
	cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1] 
cv_show('thresh',thresh)

#再来一个闭操作
thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, sqKernel) #再来一个闭操作
cv_show('thresh',thresh)

首先经过一个闭操作后,得到下列结果

image-20230804200816726

然后我们进一步使用二值化处理,将图片转换为二值图像

image-20230804201517823

现在得到的结果中,还有一部分空隙,我们再进行一次闭操作,得到结果如下:

image-20230804201115159

现在得到的结果是一个完全闭合的状态了,此时我们再检测它的外轮廓,会更准确一些。

2.3轮廓计算

接下来我们计算轮廓,和之前在处理模板一样,我们调用cv2.findContours()函数计算轮廓信息。

# 计算轮廓

thresh_, threshCnts, hierarchy = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,
	cv2.CHAIN_APPROX_SIMPLE)#

cnts = threshCnts #轮廓信息
cur_img = image.copy()
cv2.drawContours(cur_img,cnts,-1,(0,0,255),3)#在原始图像上绘制轮廓 
cv_show('img',cur_img)

image-20230804201800741

这里需要说明的是,我们这里是用经过一切预处理后得到的轮廓信息,然后绘制在原始图像中。但是我们得到的轮廓有点多,且有一些不太规则的形状,有些可能不是我们想要轮廓,我们需要把这些轮廓过滤,我们只要四组数字轮廓。我们可以根据他们的坐标位置进行筛选,具体的筛选范围大家要根据自己的实际任务选择.

locs = []

# 遍历轮廓
for (i, c) in enumerate(cnts):
	# 计算矩形
	(x, y, w, h) = cv2.boundingRect(c)
	ar = w / float(h)

	# 选择合适的区域,根据实际任务来,这里的基本都是四个数字一组
	if ar > 2.5 and ar < 4.0: #这里需要根据具体的任务更改,我这里是经过几次尝试测试出来的

		if (w > 40 and w < 55) and (h > 10 and h < 20):
			#符合的留下来
			locs.append((x, y, w, h))

# 将符合的轮廓从左到右排序
locs = sorted(locs, key=lambda x:x[0])
locs
[(34, 111, 47, 14), (95, 111, 48, 14), (157, 111, 47, 14), (219, 111, 48, 14)]

可以看到我们现在得到了四个轮廓,并且进行了排序,接下来我们怎么进行模板匹配呢?我们不是拿这四个大轮廓去匹配,而是在每一个大轮廓中,再去分隔成小轮廓,然后去和我们之前保存的10个数的模板进行匹配。

2.4计算匹配得分

接下来我们要做的是去遍历每一个轮廓当中的数字,然后将其与模板中的10个数字计算匹配得分,从而识别出对于的数字,我们先来看第一个轮廓:

image-20230804205345172

有了这个之后,就和我们最开始处理模板一样,先进行二值化处理,得到下图

image-20230804205539684

然后计算每一组的轮廓,并按照从左到右的顺序排列,以第一个数字为例,得到结果如下

image-20230804205635093

然后我们就是将这每一个数字与模板上的10个数字进行对比,看一下和哪一个最相似。具体做法跟之前都是一样的吧,先去找到外接矩形,然后对外接矩形进行resize。然后我们就要计算得分了,我们利用模板匹配中的方法,使用cv2.TM_CCOEFF计算得分,然后找到最匹配的数字,这样就完成了我们所有的步骤了

output = []
# 遍历每一个轮廓中的数字
for (i, (gX, gY, gW, gH)) in enumerate(locs):
	# initialize the list of group digits
	groupOutput = []

	# 根据坐标提取每一个组
	group = gray[gY - 5:gY + gH + 5, gX - 5:gX + gW + 5] # 扩张一下轮廓
	cv_show('group',group)
	# 预处理
	group = cv2.threshold(group, 0, 255,
		cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
	cv_show('group',group)
	# 计算每一组的轮廓
	group_,digitCnts,hierarchy = cv2.findContours(group.copy(), cv2.RETR_EXTERNAL,
		cv2.CHAIN_APPROX_SIMPLE)
	digitCnts = contours.sort_contours(digitCnts,
		method="left-to-right")[0]

	# 计算每一组中的每一个数值
	for c in digitCnts:
		# 找到当前数值的轮廓,resize成合适的的大小
		(x, y, w, h) = cv2.boundingRect(c)
		roi = group[y:y + h, x:x + w]
		roi = cv2.resize(roi, (57, 88))
		cv_show('roi',roi)

		# 计算匹配得分
		scores = []

		# 在模板中计算每一个得分
		for (digit, digitROI) in digits.items():
			# 模板匹配
			result = cv2.matchTemplate(roi, digitROI,
				cv2.TM_CCOEFF)
			(_, score, _, _) = cv2.minMaxLoc(result)
			scores.append(score)

		# 得到最合适的数字
		groupOutput.append(str(np.argmax(scores)))

	# 绘制结果
	cv2.rectangle(image, (gX - 5, gY - 5),
		(gX + gW + 5, gY + gH + 5), (0, 0, 255), 1)
	cv2.putText(image, "".join(groupOutput), (gX, gY - 15),
		cv2.FONT_HERSHEY_SIMPLEX, 0.65, (0, 0, 255), 2)

	# 得到结果
	output.extend(groupOutput)
# 打印结果

print("Credit Card: {}".format("".join(output)))
cv2.imshow("Image", image)
cv2.waitKey(0)
Credit Card: 4020340002345678

image-20230804211052032

3.小结

我们这个项目主要分两步。第一步,定位到目标数字在什么位置。第二步,基于定位好的区域,在模板当中去匹配它到底是一个什么样的值。中间利用了我们之前介绍过的各种图像处理方法。今天我们这个项目是做一个信用卡号识别,如果说大家想做车牌识别、学生卡、身份证识别,都是一个类似的做法,我们主需要更改一下对于的照片模板以及其中的一些参数即可。

🔎本章的介绍到此介绍,如果文章对你有帮助,请多多点赞、收藏、评论、订阅支持!!《Opencv入门到项目实战》

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/864686.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

TDesign中后台管理系统-用户登录

目录 1 创建用户表2 开发后端接口3 测试接口4 修改登录页面调用后端接口最终效果总结 中后台系统第一个要实现的功能就是登录了&#xff0c;我们通常的逻辑是让用户在登录页面输入用户名和密码&#xff0c;调用后端接口去验证用户的合法性&#xff0c;然后根据接口返回的结果进…

Qt 8. UDP客户端通信

1. 代码 //UdpClient.h #ifndef UDPCLIENT_H #define UDPCLIENT_H#include <QtNetwork>class Ex2; // 声明类 class UdpClient : public QObject {Q_OBJECT public:explicit UdpClient(Ex2 *ui nullptr);~UdpClient();void Send(QByteArray buf,QHostAddress addr…

腾讯云服务器远程连接的方法大全

腾讯云服务器怎么连接登录&#xff1f;腾讯云服务器支持多种远程连接方法&#xff0c;可以使用腾讯云管理控制台自带的远程连接工具&#xff0c;也可以使用第三方远程连接工具&#xff0c;如如PuTTY、Xshell等&#xff0c;Linux操作系统可以SSH登录&#xff0c;Windows可以使用…

半导体学习入门书籍推荐之《Verilog数字系统设计教程》

Verilog HDL&#xff08;简称 Verilog &#xff09;是一种硬件描述语言&#xff0c;用于数字电路的系统设计。可对算法级、门级、开关级等多种抽象设计层次进行建模。 Verilog 继承了 C 语言的多种操作符和结构&#xff0c;与另一种硬件描述语言 VHDL 相比&#xff0c;语法不是…

JavaScript 操作历史记录api怎样使用 JavaScript

JavaScript 操作历史记录api怎样使用 JavaScript History 是 window 对象中的一个 JavaScript 对象&#xff0c;它包含了关于浏览器会话历史的详细信息。你所访问过的 URL 列表将被像堆栈一样存储起来。浏览器上的返回和前进按钮使用的就是 history 的信息。 History 对象包含…

数据库信息速递 -- MariaDB 裁员后,前景不确定 (翻译)

开头还是介绍一下群&#xff0c;如果感兴趣polardb ,mongodb ,mysql ,postgresql ,redis 等有问题&#xff0c;有需求都可以加群群内有各大数据库行业大咖&#xff0c;CTO&#xff0c;可以解决你的问题。加群请加 liuaustin3微信号 &#xff0c;在新加的朋友会分到3群&#xff…

【算法挨揍日记】day01——双指针算法_移动零、 复写零

283.移动零 283. 移动零https://leetcode.cn/problems/move-zeroes/ 题目&#xff1a; 给定一个数组 nums&#xff0c;编写一个函数将所有 0 移动到数组的末尾&#xff0c;同时保持非零元素的相对顺序。 请注意 &#xff0c;必须在不复制数组的情况下原地对数组进行操作。 …

C语言之位运算

一、什么是位运算 所谓位运算是指进行二进制位的运算 在系统软件中&#xff0c;常要处理二进位的问题 例如&#xff0c;将一个存储单元中的各二进位左移或右移一位&#xff0c;两个数按位相加等 二、位运算符和位运算 1、按位与 运算符(&) 参加运算的两个数据&#xff…

单志刚的七年联盟链之路:在正确的方向,同行者总会相遇丨对话MVP

单志刚在联盟链的道路上已经坚守了7年。 从最初创业时期的“用字节开发”&#xff0c;到现在作为数金公共服务 (青岛) 有限公司&#xff08;下称“数金公服”&#xff09;区块链研发中心产品总监&#xff0c;落地全国首个以数字人民币结算的碳普惠平台“青碳行”App&#xff0…

PhotoShop2023 Beta AI版安装教程

从 Photoshop 开始&#xff0c;惊艳随之而来​ 从社交媒体贴子到修饰相片&#xff0c;设计横幅到精美网站&#xff0c;日常影像编辑到重新创造 – 无论什么创作&#xff0c;Photoshop 都可以让它变得更好。​ Photoshop2023 Beta版本安装教程和软件下载 地址&#xff1a;点击…

Redis:揭秘高效缓存与数据存储利器

Redis&#xff08;Remote Dictionary Server&#xff09;是一款开源的、内存数据结构存储系统&#xff0c;广泛应用于高性能缓存、消息队列、实时分析和计数器等场景。本文将深入探索Redis的重要概念、底层架构实现原理&#xff0c;指导程序员如何部署和使用Redis&#xff0c;并…

力扣70.爬楼梯(动态规划)

/*** author Limg* date 2023/08/11* 假设你正在爬楼梯。需要 n 阶你才能到达楼顶。* 每次你可以爬 1 或 2 个台阶。* 你有多少种不同的方法可以爬到楼顶呢&#xff1f; */#include<iostream> using namespace std; int climbStairs(int n); int main() {int n0;cin>&…

每天一道leetcode:139. 单词拆分(动态规划中等)

今日份题目&#xff1a; 给你一个字符串 s 和一个字符串列表 wordDict 作为字典。请你判断是否可以利用字典中出现的单词拼接出 s 。 注意&#xff1a;不要求字典中出现的单词全部都使用&#xff0c;并且字典中的单词可以重复使用。 示例1 输入: s "leetcode", …

Floyd算法

正如我们所知道的&#xff0c;Floyd算法用于求最短路径。Floyd算法可以说是Warshall算法的扩展&#xff0c;三个for循环就可以解决问题&#xff0c;所以它的时间复杂度为O(n^3)。 Floyd算法的基本思想如下&#xff1a;从任意节点A到任意节点B的最短路径不外乎2种可能&#xff…

FreeRTOS(消息队列)

资料来源于硬件家园&#xff1a;资料汇总 - FreeRTOS实时操作系统课程(多任务管理) 目录 一、消息队列的基本概念 1、消息队列的基本概念 2、消息队列的通信机制 3、FreeRTOS中消息队列特性 4、消息队列应用场景 二、消息队列常用API 1、使用消息队列的典型流程 三、消…

烘焙光照贴图,模型小部分发黑

1.首先确定创建了光照贴图UV&#xff0c;其次确定不是溢色&#xff0c;这个最简单&#xff0c;所有模型材质设置为双面就可以&#xff0c;URP材质球的话这里就是设置双面 在scence界面Texel Validity模式里查看溢色&#xff0c;红色表示有溢色&#xff0c;绿色表示正常 2. 光照…

异常(中)创建自定义异常,throw,throws关键字抛出异常

文章目录 前言一、创建自定义异常二、在方法中抛出异常 1.使用throw关键字抛出异常2.使用throws关键字抛出异常总结 前言 该文介绍了Java的异常的创建自定义异常&#xff0c;让我们可以自己创建出一个异常&#xff0c;应对Java API中没有的基础的异常报错。throw关键字抛出异常…

【服务平台】Rancher运行和管理Docker和Kubernetes,提供管理生产中的容器所需的整个软件堆栈

Rancher是一个开源软件平台&#xff0c;使组织能够在生产中运行和管理Docker和Kubernetes。使用Rancher&#xff0c;组织不再需要使用一套独特的开源技术从头开始构建容器服务平台。Rancher提供了管理生产中的容器所需的整个软件堆栈。  完整软件堆栈 Rancher是供采用容器的团…

7款轻量级平面图设计软件推荐

平面图设计的痕迹体现在日常生活的方方面面&#xff0c;如路边传单、杂志、产品包装袋或手机开屏海报等&#xff0c;平面设计软件层出不穷。Photoshop是大多数平面图设计初学者的入门软件&#xff0c;但随着设计师需求的不断提高&#xff0c;平面图设计软件Photoshop逐渐显示出…

Ajax 笔记(四)—— Ajax 进阶

笔记目录 4. Ajax 进阶4.1 同步代码和异步代码4.2 回调函数地狱4.2.1 解决方法一&#xff1a;Promise 链式调用4.2.2 解决方法二&#xff1a;async 函数和 await 4.3 Promise.all 静态方法4.4 事件循环4.4.1 事件循环4.4.2 宏任务与微任务 4.5 案例4.5.1 案例一-商品分类4.5.2 …