Ansys Lumerical | 米氏散射 FDTD

news2024/11/26 8:23:30

计算平面波激发的纳米粒子的散射和吸收截面、局部场增强和远场散射分布(Mie 散射)。将截面和远场结果与解析解进行比较,以验证仿真的准确性。(联系我们获取文章附件)

概述

纳米粒子的散射特性通常用场增强、横截面和远场分布来描述。本例展示了如何从单个 FDTD 仿真中获得这些结果。

运行和结果

1.打开仿真文件,然后单击“运行”按钮。

2.可以通过右键单击监视器或分析组并选择感兴趣的参量来手动浏览结果。

3.关联的脚本文件可用于绘制如下所示的代表性结果。

本地字段增强

电磁场与纳米粒子的相互作用可以在粒子表面产生强烈的场增强。频域场监测仪直接测量局部场增强。下图显示|E|的平方在XY,XZ和YZ平面中,在最接近脚本中指定的“目标波长”的波长点穿过粒子中心。

可以注意到,TFSF 源的边缘在图中可见,因为图像颜色的突然变化。源内的字段是“总计”字段(即事件字段 + 分散字段),而只有“分散”字段在源外部可见。

吸收和散射截面

吸收截面(总吸收功率除以入射光束每单位面积的功率)由位于 TFSF 源内的分析组计算。分析组测量流入颗粒的净功率,并通过将其归一化为源强度,返回吸收截面。同样,散射截面由位于 TFSF 源外部的分析组计算。

根据定义,横截面以m的平方用于 3D 模拟和m用于 2D 模拟。

横截面测量通常被标准化为散射物体的大小,如下图所示。Mie 效率定义为横截面与几何面积的比, πr2对于球体(3D)和对2r于圆(2D),并且通常相对于尺寸参数 (2πn1/λ),其中n1是 FDTD 区域的背景指数,对于空气为1。

将 FDTD 结果与从 mie3d 脚本获得的分析溶液进行比较。两个结果之间的差异很明显,希望对模拟设置进行一些改进。这将是下一节关于收敛检验的主题。


远场角散射

在大多数散射实验中,散射场(辐射图)的测量相对于所考虑的波长尺度远离散射体。“scat_ff” 监视器返回远场中的散射场分布。以下极坐标图显示了 X-Y、X-Z 和 Y-Z 平面中远场中的散射场。每个图都包含两种颜色的线条:蓝色表示 FDTD 仿真结果,绿色表示 mie3ds12 脚本命令的分析结果。第一个图显示了如何在每个平面中定义极角。


重要模型设置

模型设置脚本

模型对象中的设置脚本用于设置网格大小、仿真跨度和粒子位置。该脚本是确保模拟区域、网格覆盖区域、源、scat 和 abs 监视器位置正确的便捷方法。例如,TFSF 源必须位于 scat 和 abs 监视器之间,对象之间至少有两个网格单元。这些对象的位置必须通过安装脚本进行设置。其他属性(如模拟时间)可以直接在对象中修改。

TFSF 来源

TFSF 光源是专门为这种情况而设计的,其中非周期性物体被平面波照亮。通过将散射场与入射场分开,使纳米粒子的散射分析变得简单明了。为了使散射分析正常工作,确保散射体完全在 TFSF 源内至关重要。

使用 TFSF 源进行电源归一化

TFSF 源的电源规范化可能会令人困惑。与其将结果归一化为源功率(对于理想平面波来说,这是无限的,因为它具有无限的范围),不如按源强度进行归一化。这导致功率测量值以横截面型单位返回。

“abs”和“scat”分析组

由六个2D监视器组成,形成一个封闭的盒子,测量流入/流出盒子的净功率。这些分析组的位置非常重要。测量吸收功率的 “abs” 分析组必须完全在 TFSF 源内,但在粒子之外。“scat” 监视器必须完全位于 TFSF 源之外。

网格覆盖区域

对于金属仿真,网格覆盖区域通常用于更准确地解析金属界面的位置,尤其是曲面。在此仿真中,网格覆盖区域设置得足够大,不仅包括金球,还包含整个TFSF区域。这是有意为之,因为 TFSF 源在均匀网格化区域中效果最佳。

另请注意,网格大小会影响总监视器和 scat 监视器与源的距离。最好在源和监视器之间保持至少两个网格单元间距,以避免放置在灰色阴影源注入区域中的监视器返回非物理结果。请注意,这些条件由“模型”设置脚本强制执行。

对称

此模拟在 X 和 Z 维度上都具有对称平面。为了将仿真时间和内存减少 4 倍,将 X min 边界条件设置为对称,将 Z min 边界条件设置为反对称。请注意,只有当粒子和源都具有必要的对称性时,才能使用对称性。

使用参数更新模型

对仿真文件进行参数化,以便更轻松地设置仿真。该模板目前使用球形粒子,但它可以与任意形状的粒子或多个粒子一起使用。在“模型”中指定参数后,其余仿真对象的大小将自动调整。

· 设置源波长范围和偏振。

· 设置纳米颗粒的材料或索引。

· 在“模型”中设置纳米颗粒的跨度和位置、网格覆盖的网格大小以及仿真跨度。源和 “abs”/“scat” 分析组将自动由最多两个网格单元分开,纳米颗粒被 “abs” 分析组完全包围。

· 在模拟非球形粒子或多个粒子时,可能需要更新边界条件以匹配新结构的对称性。还需要修改关联的脚本文件,以校正散射体的几何面积和大小参数。

进一步推广模型

基板上的颗粒

此示例使用被均匀材料包围的粒子。如果颗粒在基板上,则必须修改分析的远场部分。此示例中使用的技术(从封闭的监视器盒投影)仅在所有监视器都位于向外延伸到无穷大的单一均匀材料中时才有效。当存在基板时,计算远场散射模式的最佳方法是使用一个位于粒子上方或下方的监视器(取决于散射的主要方向)。然后,您可以使用标准的 farfield3d 函数。使用单个监视器时,必须使仿真跨度足够大,以使大多数散射光在到达 PML 吸收边界之前可以通过监视器。此问题仅适用于远场分析。无需更改横截面和近场测量的分析。

非偏振照明

对于具有非相干非偏振照明的系统,运行第二次仿真,将源偏振旋转 90 度,然后对结果求平均值。这可以通过对源偏振角进行 2 点参数扫描轻松实现。

收敛

使用当前设置(模拟范围为 1x1x1 um3,网格精度3,5nm网格附近粒子)仿真需要大约150 MB的内存,运行时间约为1分钟。这些设置提供了合理的精度水平,同时最大限度地减少了仿真时间。以下更改将提供更高的准确性。

网格细化

将网格细化设置为“共形变体 1”,以实现金颗粒边界的子单元分辨率。如果网格很粗糙,并且在目标频率下金属和周围介质之间的介电常数差异很大,则选择此设置时必须小心。最好执行一些收敛测试。

网孔尺寸

将网格覆盖网格尺寸设置为 0.8nm

模拟跨度

在所有方向上将模拟跨度设置为 2um。当模拟区域太小时,共振表面等离子体模式的倏逝尾部将与 PML 边界条件相互作用。

PML 反射

从 PML 边界条件反射的任何光都可能影响结果。更多的 PML 层将减少反射。但是,如果您使用默认 8 个图层的“拉伸坐标 pml”,则无需更改它,除非您需要更高的精度。

DGTD 求解器

考虑使用米氏散射 (DGTD)获得金属纳米颗粒的高精度结果。DGTD 求解器中有限元网格的性质可以实现更好的收敛,并且不易出现阶梯和热点问题。

下图显示了更高精度 FDTD 仿真的横截面。FDTD 与理论结果之间的一致性显然要好得多。此外,较小的网格会产生更高分辨率的场轮廓,从而更好地解析金属界面附近的场。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/859080.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

AtcoderABC223场

A - Exact PriceA - Exact Price 题目大意 高橋的钱包里只有一个或多个100日元硬币,没有其他的东西。现在给定一个金额X,需要判断是否可能存在这样的情况,使得钱包中的总金额是X日元。 思路分析 根据题目要求,钱包中只有100日元…

【Yolov5+Deepsort】训练自己的数据集(2)| 目标检测追踪 | 轨迹绘制

📢前言:本篇是关于如何使用YoloV5Deepsort训练自己的数据集,从而实现目标检测与目标追踪,并绘制出物体的运动轨迹。本章讲解的为第二部分内容:训练集的采集与划分,Yolov5模型的训练。本文中用到的数据集均为…

【C语言学习——————文件处理操作的简单介绍与讲解】

欢迎阅读新一期的c语言学习模块————文件处理操作 ✒️个人主页:-_Joker_- 🏷️专栏:C语言 📜代码仓库:c_code 🌹🌹欢迎大佬们的阅读和三连关注,顺着评论回访🌹&#…

【工作记录】mysql中实现分组统计的三种方式

前言 实际工作中对范围分组统计的需求还是相对普遍的,本文记录下在mysql中通过函数和sql完成分组统计的实现过程。 数据及期望 比如我们获取到了豆瓣电影top250,现在想知道各个分数段的电影总数. 表数据如下: 期望结果: 实现方案 主要思路是根据s…

国产芯力特Mini LIN SBC SIT1028Q应用方案,可替代TJA1028

SIT1028Q是一款内部集成高压LDO稳压源的本地互联网络(LIN)物理层收发器,可为外部ECU(Electronic Control Unit)微控制器或相关外设提供稳定的5V/3.3V电源,该LIN收发器符合LIN2.0、LIN2.1、LIN2.2、LIN2.2A、…

学习嵌入式系统的推荐步骤:

C语言:作为基础中的基础,选择一本常用的C语言教材,并注意通过实践编写习题、编译运行代码来加深理解。动手实践是非常重要的。 微机原理与接口技术:这本教材将帮助你了解CPU的基本结构、工作原理以及与外设的交互。虽然开始可能有…

手把手教你如何从零开始搭建自己的鞋店商城

对于不懂技术的新手来说,建立一个鞋店商城可能会显得有些困难。然而,现在有一些方便易用的网站建设平台可以帮助您快速搭建一个鞋店商城。本文将介绍乔拓云网的建站教程,让您轻松完成建站。 步骤1:注册乔拓云网账号并登录 首先&a…

苹果Mac像Windows一样使用

一、将磁盘访问设置的像Windows一样: 1.1、点击任务栏第一个按钮打开“访达”,点击菜单栏上的访达-偏好设置: 1.2、勾选“硬盘”,这样macOS的桌面上就会显示一个本地磁盘,之后重命名为磁盘根,相当于window…

Token 失效退出至登录页面

1. 在登录页面,调用登录的接口后,直接写上当前时间,保存在本地 代码: // 点击登录login(form) {this.$refs[form].validate((valid) > {if (valid) {this.$API.Login(this.form).then((res) > {// console.log(res, "1…

专注于创意设计,为您的小程序和网站建设带来更多的可能性

随着移动互联网的快速发展,越来越多的企业开始关注小程序和网站建设,以此来拓展业务和提升品牌形象。 在这个领域中,创意设计扮演着关键的角色。它不仅可以帮助企业打造独特的形象和品牌,还能够提高用户体验和购买决策的效率。 因…

C语言每日一题:15:寻找峰值。

题目链接 思路一: 思路二: int findPeakElement(int* nums, int numsLen ) {// write code hereint left0;int rightnumsLen-1;int* curnums;int mid0;//特殊情况判断两个值,单增和单减if(cur[0]>cur[1]){return 0;}if(cur[numsLen-1]>…

PROFINET转DeviceNet网关普通网线能代替profinet吗

捷米JM-DNT-PN这款神器,连接PROFINET和DeviceNet网络,让两边数据轻松传输。 这个网关不仅从ETHERNET/IP和DEVICENET一侧读写数据,还可以将缓冲区数据交换,这样就可以在两个网络之间愉快地传递数据了!而且,…

找不到msvcr120.dll,无法继续执行代码,怎么修复?

当msvcp120.dll文件丢失或找不到时,会导致无法运行使用C编写的程序。这可能是由于以下原因导致的: 1.删除或移动文件:如果你不小心删除了或移动了msvcp120.dll文件,你将无法找到它并加载它,从而导致程序无法正常运行。…

护肤品种草软文怎么写?教你几招写作技巧

护肤品种草软文以独特的方式将产品的优势和特点传递给消费者,从而引导消费者购买。然而,随着护肤品市场的竞争日益激烈,如何写出一篇高质量的护肤品种草软文已经成为了很多品牌方和企业方的难题。本文伯乐网络传媒将从多个角度教你如何写出一…

学习C语言的好处:

基础编程语言:C语言是其他编程语言的基础,学习C语言可为后续学习打下坚实基础,广泛应用于嵌入式系统、操作系统、网络协议等。 简单易学:C语言语法简单易懂,适合初学者。只需文本编辑器和编译器,即可开始编…

μCOS-Ⅲ+GD32_SysTick与PendSV中断管理配置浅解

μCOS-ⅢGD32_SysTick与PendSV中断管理配置浅解 GD32移植μCOS-Ⅲ时,需要特别关注的两个与系统相关的且非常重要的中断,一个是提供OS系统时基的滴答定时器(SysTick_Handler中断),另一个是跟任务调度有关的(PendSV_Handler中断),成…

常见的数据结构:树Tree

目录 1.概念 1.1 满二叉树 1.2 完全二叉树 1.3 平衡二叉树 2.遍历方式 2.1 先序遍历 2.2 中序遍历 2.3 后序遍历 2.4 层序遍历 1.概念 原理:一种特殊的数据结构,每个节点有零个或多个子节点;没有父节点的节点称为根节点;每…

【Flutter】【基础】CustomPaint 绘画功能,绘制各种图形(二)

CustomPaint 使用实例和代码: 1.canvas.drawColor 绘制背景颜色 class MyPainter1 extends CustomPainter {overridevoid paint(Canvas canvas, Size size) {//绘制背景颜色,整个UI 现在就是红色的canvas.drawColor(Colors.red, BlendMode.srcATop);}…

STM32--EXTI外部中断

前文回顾---STM32--GPIO 相关回顾--有关中断系统简介 目录 STM32中断 NVIC EXTI外部中断 AFIO EXTI框图 旋转编码器简介 对射式红外传感器工程 代码: 旋转编码器工程 代码: STM32中断 先说一下基本原理: 1.中断请求发生&#xff1a…

创建型设计模式:4、建造者模式(Builder Pattern)

目录 1、建造者模式含义 2、建造者模式的讲解 3、使用C实现建造者模式的实例 4、建造者模式的优缺点 5、建造者模式VS工厂模式 1、建造者模式含义 The intent of the Builder design pattern is to separate the construction of a complex object from its representatio…