FreeRTOS源码分析-10 互斥信号量

news2025/1/9 17:04:58

目录

1 事件标志组概念及其应用

1.1 事件标志组定义

1.2 FreeRTOS事件标志组介绍

1.3 FreeRTOS事件标志组工作原理

2 事件标志组应用

2.1 功能需求

2.2 API

 2.3 功能实现

3 事件标志组原理

3.1 事件标志组控制块

3.2 事件标志组获取标志位

3.3 等待事件标志触发

3.4 事件标志组设置标志位

3.5 事件标志组任务同步


1 事件标志组概念及其应用

1.1 事件标志组定义

门钥匙代表或的问题,每个都可以开启
公交车代表与的问题,到齐了才可以走

 

FreeRTOS事件标志组一共8个bit。

如Task 1或Tast 2去触发第1位,第1位或第三位能触发任务Task3

如Task 6、7、8同时置位触发Task 4

1.2 FreeRTOS事件标志组介绍

任务可以和事件标志组进行关联,如bit23,任务阻塞等待消息,和消息队列一样有个超时机制

当任意任务或者中断触发置位的时候,任务会从阻塞变为就绪态。

1.3 FreeRTOS事件标志组工作原理

 创建事件控制块,关联事件,等待事件触发

2 事件标志组应用

2.1 功能需求

  • 1、使用事件标志组检测多个按键输入(K3、K4、K5、K6)
  • 2、当检测到任何一个按键按下,串口打印输出按键信息
  • 3、当4路按键都已经按下,触发蜂鸣器报警

2.2 API

CubeMX中未提供,需要自己创建

 EventBits_t 返回值返回的是所有24位的值

守护任务:处理操作系统不想在中断中处理的任务,是一种特殊类型的任务,它在系统中扮演着重要的角色。它被用于监控和处理FreeRTOS内部的错误和异常情况,以确保系统的稳定性。守护任务可以使用软件定时器来执行一些周期性的任务。通过创建一个周期性的软件定时器,守护任务可以在固定的时间间隔内执行特定的操作。例如,守护任务可以使用软件定时器来定期检查任务堆栈的使用情况、检测任务优先级错误或处理未处理的中断等。软件定时器提供了一种简便的方式来触发守护任务的执行,以确保系统中的重要任务得到及时处理。

中断中不允许上下文切换,都是由守护任务来执行的。

 使用WaitBits,会让任务进入阻塞态

 参数解释:

  • xEventGroup:事件组句柄,表示要操作的事件组。
  • uxBitsToWaitFor:等待的事件位,即需要等待其中的哪些事件发生。可以使用位掩码形式指定多个事件位。若指定为0,则表示不等待任何事件,直接返回当前事件组的位状态。
  • uxBitsToSet:设置的事件位,即在等待期间发生事件后,需要设置哪些事件位。同样,可以使用位掩码指定多个事件位。
  • xTicksToWait:等待的超时时间,以FreeRTOS的Tick单位表示。可以设置为portMAX_DELAY表示无限等待,或者具体的等待时间。

返回值:

  • 返回已经发生的事件位,即满足等待条件的事件。如果等待发生事件时超时,则返回0。

使用xEvetnGroupSync函数的具体步骤如下:

  1. 创建或获取一个事件组句柄。
  2. 使用xEvetnGroupSync函数等待指定的事件位。可以设置需要等待的事件位、需要设置的事件位和等待超时时间。
  3. 根据返回值判断等待是否成功,根据已发生的事件位执行相应的操作。

注意,xEvetnGroupSync函数是一个阻塞函数,即在等待期间会阻塞当前任务的执行。如果有其他任务在等待相同的事件组,则它们可能会被唤醒以执行后续操作。因此,在使用xEvetnGroupSync函数时需要谨慎设计,以避免出现死锁或优先级反转等问题。

 2.3 功能实现

STM32CubeMX功能配置

GPIO略

根据接口说明 ,事件标志组中断中需要开启守护任务

 

 

 

按键中断及事件标志组创建

//freertos.c

//...略
#include "event_groups.h"

EventGroupHandle_t KeyEventGroup; //全局变量句柄

void MX_FREERTOS_Init(void) {

	//创建
	KeyEventGroup = xEventGroupCreate();
	if(KeyEventGroup == NULL){
		printf("KeyEventGroup Create Error\r\n");
	}

    //...略
}

按键检测任务和蜂鸣器报警任务

 

//gpio.c

#include "event_groups.h"

//...略
/*  
#define KEY3_EVENT_BIT  (1<<0)
#define KEY4_EVENT_BIT  (1<<1)
#define KEY5_EVENT_BIT  (1<<2)
#define KEY6_EVENT_BIT  (1<<3) 
	 
typedef enum
{
	KEY_DOWN,
	KEY_UP,
	KEY_RESET

}teKeyStatus;

*/

teKeyStatus KeyStatus;
extern EventGroupHandle_t KeyEventGroup;


void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin){

	if(Key3_Pin == GPIO_Pin)
    {
		if(HAL_GPIO_ReadPin(Key3_GPIO_Port,Key3_Pin) == GPIO_PIN_RESET)
        {
			HAL_Delay(10);
			if(HAL_GPIO_ReadPin(Key3_GPIO_Port,Key3_Pin) == GPIO_PIN_RESET)
            {
                //设置事件
				xEventGroupSetBitsFromISR(KeyEventGroup,KEY3_EVENT_BIT,NULL);
			}
		}
	}
	
	if(Key4_Pin == GPIO_Pin)
    {
		if(HAL_GPIO_ReadPin(Key4_GPIO_Port,Key4_Pin) == GPIO_PIN_RESET)
        {
			HAL_Delay(10);
			if(HAL_GPIO_ReadPin(Key4_GPIO_Port,Key4_Pin) == GPIO_PIN_RESET)
            {
                //设置事件
				xEventGroupSetBitsFromISR(KeyEventGroup,KEY4_EVENT_BIT,NULL);
			}
		}
	}

	if(Key5_Pin == GPIO_Pin)
    {
		if(HAL_GPIO_ReadPin(Key5_GPIO_Port,Key5_Pin) == GPIO_PIN_RESET)
        {
			HAL_Delay(10);
			if(HAL_GPIO_ReadPin(Key5_GPIO_Port,Key5_Pin) == GPIO_PIN_RESET)
            {
                //设置事件
				xEventGroupSetBitsFromISR(KeyEventGroup,KEY5_EVENT_BIT,NULL);
			}
		}
	}

	if(Key6_Pin == GPIO_Pin)
    {
		if(HAL_GPIO_ReadPin(Key6_GPIO_Port,Key6_Pin) == GPIO_PIN_RESET)
        {
			HAL_Delay(10);
			if(HAL_GPIO_ReadPin(Key6_GPIO_Port,Key6_Pin) == GPIO_PIN_RESET)
            {
                //设置事件
				xEventGroupSetBitsFromISR(KeyEventGroup,KEY6_EVENT_BIT,NULL);
			}
		}
	}
}
//freertos.c



void Delay_Task(void const * argument)
{
  /* USER CODE BEGIN Delay_Task */
	EventBits_t KeyEventBits;
  /* Infinite loop */
  for(;;)
  {
	  KeyEventBits = xEventGroupWaitBits(KeyEventGroup,
							KEY3_EVENT_BIT|KEY4_EVENT_BIT|KEY5_EVENT_BIT|KEY6_EVENT_BIT,
								pdFALSE,
								pdFALSE,
								portMAX_DELAY);
	  printf("Key is Down Key Event Bit is %x\r\n",KeyEventBits);
	  osDelay(10);
  }
}




void High_Task(void const * argument)
{
  EventBits_t KeyEventBits;
  for(;;)
  {
	  KeyEventBits = xEventGroupWaitBits(KeyEventGroup,
							KEY3_EVENT_BIT|KEY4_EVENT_BIT|KEY5_EVENT_BIT|KEY6_EVENT_BIT,
								pdTRUE,
								pdTRUE,
								portMAX_DELAY);	
	  if(KeyEventBits == (KEY3_EVENT_BIT|KEY4_EVENT_BIT|KEY5_EVENT_BIT|KEY6_EVENT_BIT))
      {
		printf("Buzzer is Toggle\r\n");
		HAL_GPIO_TogglePin(Buzzer_GPIO_Port,Buzzer_Pin);
	  }
      osDelay(10);
  }
}

3 事件标志组原理

3.1 事件标志组控制块

 


	
	#define eventCLEAR_EVENTS_ON_EXIT_BIT	0x01000000UL		//表示退出是否清楚已经触发的标志位 25bit表示
	#define eventUNBLOCKED_DUE_TO_BIT_SET	0x02000000UL		//解除阻塞是否,已经设置标志位 26位
	#define eventWAIT_FOR_ALL_BITS			0x04000000UL		//是与逻辑还是或逻辑
	#define eventEVENT_BITS_CONTROL_BYTES	0xff000000UL		//用于分解出,事件标志组位使用

typedef struct xEventGroupDefinition
{
	//事件标志组
	EventBits_t uxEventBits;
	//任务等待的列表
	List_t xTasksWaitingForBits;		/*< List of tasks waiting for a bit to be set. */
} EventGroup_t;

3.2 事件标志组获取标志位

 全局变量一定要保护,所以要进入临界段

#define xEventGroupGetBits( xEventGroup ) xEventGroupClearBits( xEventGroup, 0 )

/*
	参数:
	1、控制块/句柄
	2、要清除位
	返回值:
		事件标志位

*/ 1<<0
EventBits_t xEventGroupClearBits( EventGroupHandle_t xEventGroup, const EventBits_t uxBitsToClear )
{
EventGroup_t *pxEventBits = ( EventGroup_t * ) xEventGroup;
EventBits_t uxReturn;

	/*
		1、进入临界段
		2、获取当前事件标志位
		3、清除要设置的事件标志位
		4、退出临界段
		5、返回事件标志组值
	
	*/
	taskENTER_CRITICAL();
	{

		/* The value returned is the event group value prior to the bits being
		cleared. */
		uxReturn = pxEventBits->uxEventBits;

		/* Clear the bits. */
		pxEventBits->uxEventBits &= ~uxBitsToClear;
	}
	taskEXIT_CRITICAL();

	return uxReturn;
}

/*
	参数:	
		1、事件控制块
	返回值:
		事件标志位

*/
EventBits_t xEventGroupGetBitsFromISR( EventGroupHandle_t xEventGroup )
{
UBaseType_t uxSavedInterruptStatus;
EventGroup_t *pxEventBits = ( EventGroup_t * ) xEventGroup;
EventBits_t uxReturn;
	
	//禁止中断 带返回值
	uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
	{
		//获取事件标志位
		uxReturn = pxEventBits->uxEventBits;
	}
	//恢复中断,在进入禁止之前的状态
	portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );

	return uxReturn;
}

3.3 等待事件标志触发

 复位列表项:表示事件信息

/*
	参数:
		1、事件控制块
		2、要等待出发的标志位
		3、退出是否要清除
		4、与逻辑还是或逻辑
		5、阻塞等待时间
	返回值:
		当前事件标志位
*/
EventBits_t xEventGroupWaitBits( EventGroupHandle_t xEventGroup, 
								const EventBits_t uxBitsToWaitFor, 
								const BaseType_t xClearOnExit, 
								const BaseType_t xWaitForAllBits, 
								TickType_t xTicksToWait )
{
EventGroup_t *pxEventBits = ( EventGroup_t * ) xEventGroup;
EventBits_t uxReturn, uxControlBits = 0;
BaseType_t xWaitConditionMet, xAlreadyYielded;
BaseType_t xTimeoutOccurred = pdFALSE;
	//挂起调度器
	vTaskSuspendAll();
	{
		//获取当前的事件标志位
		const EventBits_t uxCurrentEventBits = pxEventBits->uxEventBits;

		/* 检查是否触发 
			参数:	
				1、当前的事件标志位
				2、要等待触发的事件标志位
				3、触发逻辑???
			返回值:	
				pdFALSE  pdTRUE
		*/
		xWaitConditionMet = prvTestWaitCondition( uxCurrentEventBits, uxBitsToWaitFor, xWaitForAllBits );

		if( xWaitConditionMet != pdFALSE )
		{
			
			/* 已经触发 */
			uxReturn = uxCurrentEventBits;
			xTicksToWait = ( TickType_t ) 0;

			/* 清楚已经触发的标志 */
			if( xClearOnExit != pdFALSE )
			{
				pxEventBits->uxEventBits &= ~uxBitsToWaitFor;
			}
			else
			{
				mtCOVERAGE_TEST_MARKER();
			}
		}
		else if( xTicksToWait == ( TickType_t ) 0 )
		{
			/* 不需要超时,直接返回标志位. */
			uxReturn = uxCurrentEventBits;
		}
		else
		{
			/* 事件没有触发,并且需要超时*/
			if( xClearOnExit != pdFALSE )
			{
				//uxControlBits = 0x01000000UL;
				uxControlBits |= eventCLEAR_EVENTS_ON_EXIT_BIT;
			}
			else
			{
				mtCOVERAGE_TEST_MARKER();
			}

			if( xWaitForAllBits != pdFALSE )
			{
				//uxControlBits = 0x05000000UL;
				uxControlBits |= eventWAIT_FOR_ALL_BITS;
			}
			else
			{
				mtCOVERAGE_TEST_MARKER();
			}

			/* 把任务添加到事件列表中
				参数:
					1、列表的地址
					2、传入列表项值
					3、任务阻塞时间

			*/
			vTaskPlaceOnUnorderedEventList( &( pxEventBits->xTasksWaitingForBits ), ( uxBitsToWaitFor | uxControlBits ), xTicksToWait );

			uxReturn = 0;

			traceEVENT_GROUP_WAIT_BITS_BLOCK( xEventGroup, uxBitsToWaitFor );
		}
	}
	//恢复调度器
	xAlreadyYielded = xTaskResumeAll();
	//再次判断是否需要超时
	if( xTicksToWait != ( TickType_t ) 0 )
	{
		if( xAlreadyYielded == pdFALSE )
		{
			//进行上下文切换 ->pendSV
			portYIELD_WITHIN_API();
		}
		else
		{
			mtCOVERAGE_TEST_MARKER();
		}

		/* 
			任务已经恢复
			1、复位列表项中的值  复位为任务有优先级
		*/
		uxReturn = uxTaskResetEventItemValue();
		//是不是通过事件置位解除的任务
		if( ( uxReturn & eventUNBLOCKED_DUE_TO_BIT_SET ) == ( EventBits_t ) 0 )
		{
			//进入临界段
			taskENTER_CRITICAL();
			{
				/* 获取当前事件位. */
				uxReturn = pxEventBits->uxEventBits;

				/* 再此判断是否已经置位 */
				if( prvTestWaitCondition( uxReturn, uxBitsToWaitFor, xWaitForAllBits ) != pdFALSE )
				{
					//如果需要清除,清除触发后的标志位
					if( xClearOnExit != pdFALSE )
					{
						pxEventBits->uxEventBits &= ~uxBitsToWaitFor;
					}
					else
					{
						mtCOVERAGE_TEST_MARKER();
					}
				}
				else
				{
					mtCOVERAGE_TEST_MARKER();
				}
			}
			taskEXIT_CRITICAL();
			xTimeoutOccurred = pdFALSE;
		}
		else
		{
			/* The task unblocked because the bits were set. */
		}

		/* 返回当前事件标志位. */
		uxReturn &= ~eventEVENT_BITS_CONTROL_BYTES;
	}
	traceEVENT_GROUP_WAIT_BITS_END( xEventGroup, uxBitsToWaitFor, xTimeoutOccurred );

	return uxReturn;
}

3.4 事件标志组设置标志位

 

/*
	参数:
		1、事件控制块
		2、要设置的事件位
	返回值:
		1、当前事件标志位
*/
EventBits_t xEventGroupSetBits( EventGroupHandle_t xEventGroup, const EventBits_t uxBitsToSet )
{
ListItem_t *pxListItem, *pxNext;
ListItem_t const *pxListEnd;
List_t *pxList;
EventBits_t uxBitsToClear = 0, uxBitsWaitedFor, uxControlBits;
EventGroup_t *pxEventBits = ( EventGroup_t * ) xEventGroup;
BaseType_t xMatchFound = pdFALSE;

	//获取事件列表头
	pxList = &( pxEventBits->xTasksWaitingForBits );
	//获取列表尾节点
	pxListEnd = listGET_END_MARKER( pxList ); /*lint !e826 !e740 The mini list structure is used as the list end to save RAM.  This is checked and valid. */
	//挂起调度器
	vTaskSuspendAll();
	{
		//获取头节点
		pxListItem = listGET_HEAD_ENTRY( pxList );

		/* 设置事件标志位 */
		pxEventBits->uxEventBits |= uxBitsToSet;

		/* 循环遍历整个列表项,直到列表头节点等于尾节点(指针) */
		while( pxListItem != pxListEnd )
		{
			//获取下个列表项
			pxNext = listGET_NEXT( pxListItem );
			//获取当前列表项的值
			uxBitsWaitedFor = listGET_LIST_ITEM_VALUE( pxListItem );
			//标记,是否找到需要处理的节点
			xMatchFound = pdFALSE;

			/* 拆分*/
			uxControlBits = uxBitsWaitedFor & eventEVENT_BITS_CONTROL_BYTES;
			uxBitsWaitedFor &= ~eventEVENT_BITS_CONTROL_BYTES;

			if( ( uxControlBits & eventWAIT_FOR_ALL_BITS ) == ( EventBits_t ) 0 )
			{
				//或逻辑
				/* 等待位已经置位 */
				if( ( uxBitsWaitedFor & pxEventBits->uxEventBits ) != ( EventBits_t ) 0 )
				{
					//找到了已经触发的节点
					xMatchFound = pdTRUE;
				}
				else
				{
					mtCOVERAGE_TEST_MARKER();
				}
			}
			//表示所有等待的位都已经触发
			else if( ( uxBitsWaitedFor & pxEventBits->uxEventBits ) == uxBitsWaitedFor )
			{
				/*找到触发的节点 */
				xMatchFound = pdTRUE;
			}
			else
			{
				/* Need all bits to be set, but not all the bits were set. */
			}

			if( xMatchFound != pdFALSE )
			{
				/* 是否需要清除 */
				if( ( uxControlBits & eventCLEAR_EVENTS_ON_EXIT_BIT ) != ( EventBits_t ) 0 )
				{
					//做个标记
					uxBitsToClear |= uxBitsWaitedFor;
				}
				else
				{
					mtCOVERAGE_TEST_MARKER();
				}

				/* 把任务从事件列表中移除
					参数:	
						1、列表项
						2、事件标志位+解锁处理标志位  内部写入了列表项的value里面

				*/
				( void ) xTaskRemoveFromUnorderedEventList( pxListItem, pxEventBits->uxEventBits | eventUNBLOCKED_DUE_TO_BIT_SET );
			}

			/* 当前列表项指向下个,继续遍历*/
			pxListItem = pxNext;
		}

		/* 清除设置后的标志位 */
		pxEventBits->uxEventBits &= ~uxBitsToClear;
	}
	//开启调度器
	( void ) xTaskResumeAll();

	return pxEventBits->uxEventBits;
}

	/*
		参数:
		1、事件控制块
		2、要设置的标志位
		3、NULL
	*/
	BaseType_t xEventGroupSetBitsFromISR( EventGroupHandle_t xEventGroup, const EventBits_t uxBitsToSet, BaseType_t *pxHigherPriorityTaskWoken )
	{
	BaseType_t xReturn;
		//调用软件定时器函数,,用于发送消息到软件定时器任务,进行处理
		xReturn = xTimerPendFunctionCallFromISR( vEventGroupSetBitsCallback, ( void * ) xEventGroup, ( uint32_t ) uxBitsToSet, pxHigherPriorityTaskWoken );

		return xReturn;
	}
	/*
		设置事件标志位的回调函数,内部其实就是调用xEventGroupSetBits
	*/
	void vEventGroupSetBitsCallback( void *pvEventGroup, const uint32_t ulBitsToSet )
	{
	( void ) xEventGroupSetBits( pvEventGroup, ( EventBits_t ) ulBitsToSet );
	}
	
	BaseType_t xTimerPendFunctionCallFromISR( PendedFunction_t xFunctionToPend, void *pvParameter1, uint32_t ulParameter2, BaseType_t *pxHigherPriorityTaskWoken )
	{
	DaemonTaskMessage_t xMessage;
	BaseType_t xReturn;

		/* 封装消息 */
		xMessage.xMessageID = tmrCOMMAND_EXECUTE_CALLBACK_FROM_ISR;
		xMessage.u.xCallbackParameters.pxCallbackFunction = xFunctionToPend;
		xMessage.u.xCallbackParameters.pvParameter1 = pvParameter1;
		xMessage.u.xCallbackParameters.ulParameter2 = ulParameter2;
		//通过消息队列和软件定时器任务进行通信
		xReturn = xQueueSendFromISR( xTimerQueue, &xMessage, pxHigherPriorityTaskWoken );
		/*
			分析:
				软件定时器任务要等待消息队列,之后解析处理,最终调用xEventGroupSetBits
		
		*/

		return xReturn;
	}

3.5 事件标志组任务同步

 待完成

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/845313.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Mid journey V5.2 终极指南

MidJourney 是迄今为止最高质量的人工智能文本到图像生成器之一。我想你们中的大多数人都可以创建一些简单的提示&#xff0c;例如“留着胡子的男人”或“森林里的狼”&#xff0c;并能够在那里生成一些相当不错的图像......但是...... 如果你想用Midjourney创造出杰出的艺术&a…

Spring MVCSpring Boot

文章目录 Spring MVC什么是MVC模式Spring MVC优点SpringMVC 运行流程SpringMVC组件SpringMVC常用的注解有哪些SpringMVC的拦截器和过滤器有什么区别&#xff1f;执行顺序是什么 SpringBoot对SpringBoot的理解Spring和SpringBoot的关系&#xff1f;SpringBoot有哪些核心注解Spri…

IMv1.0

一、背景内容 总结golang基础内容&#xff0c;通过一个实例实时 IM系统简进行总结知识 二、简要的图 简要说明&#xff1a; 1.在server.go中&#xff0c;创建一个Newserver返回server指针的结构体 2.正对这个指针结构体实现两个方法 Handler&#xff08;处理方法&#xff0…

Vue2与Vue3—引入DataV

一、文档参考 vue2使用DataV文档 vue3使用DataV文档 二、开始 1、npm安装DateV 支持npm、pnpm、yarn V2&#xff1a; npm install jiaminghi/data-viewV3&#xff1a; npm install kjgl77/datav-vue32、全局引入DataV // main.ts中全局引入 v2: import dataV from jiaminghi/…

nginx+flask+uwsgi部署遇到的坑

文章目录 1.环境&#xff1a;2.uwsgi_conf.ini具体配置内容3.nginx 具体配置4.具体命令(注意使用pip3命令安装)5.服务异常排查 1.环境&#xff1a; centos8 uWSGI 2.0.22 gmssl 3.2.2 nginx version: nginx/1.18.0 项目目录&#xff1a; 2.uwsgi_conf.ini具体配置内容 [uws…

Linux CEF(Chromium Embedded Framework)源码下载编译详细记录

Linux CEF&#xff08;Chromium Embedded Framework&#xff09;源码下载编译 背景 由于CEF默认的二进制分发包不支持音视频播放&#xff0c;需要自行编译源码&#xff0c;将ffmpeg开关打开才能支持。这里介绍的是Linux平台下的CEF源码下载编译过程。 前置条件 下载的过程非…

Idea小操作

Idea操作 idea提取内容构成一个方法 idea提取内容构成一个方法

git clean 命令

git clean -n //显示要删除的文件&#xff0c;clean的演习&#xff0c;告诉哪些文件删除&#xff0c;只是一个提醒。 git clean -dn //显示要删除的文件和目录 git clean -f //删除未追踪的文件 git clean -dff //删除未追踪的目录 git clean -df //清除所有未跟踪文件&#xf…

【MySQL】聚合函数与分组查询

文章目录 一、聚合函数1.1 count 返回查询到的数据的数量1.2 sum 返回查询到的数据的总和1.3 avg 返回查询到的数据的平均值1.4 max 返回查询到的数据的最大值1.5 min 返回查询到的数据的最小值 二、分组查询group by2.1 导入雇员信息表2.2 找到最高薪资和员工平均薪资2.3 显示…

小型双轮差速底盘机器人实现红外跟随功能

1. 功能说明 本文示例将实现R023样机小型双轮差速底盘跟随人移动的功能。在小型双轮差速底盘前方按下图所示安装3个 近红外传感器&#xff0c;制作一个红外线发射源&#xff0c;实现当红外发射源在机器人的检测范围内任意放置或移动时&#xff0c;机器人能追踪该发射源。 2. 电…

ffmpeg工具实用命令

说明&#xff1a;ffmpeg是一款非常好用的媒体操作工具&#xff0c;包含了许多对于视频、音频的操作&#xff0c;有些视频播放器里面实际上就是使用了ffmpeg。本文介绍ffmpeg的使用以及一些较为实用的命令。 安装 ffmpeg是命令行操作的&#xff0c;不需要安装&#xff0c;可在…

ADSP21569之开发笔记(一)

CLDP烧写SigmStudio融合程序到Flash实现脱机步骤&#xff1a; 1、配置CCES属性&#xff0c;生成ldr文件。 ADI的flash烧写都需要驱动&#xff0c;这个驱动并不是通用的&#xff0c;每一个型号的flash都会有自己对应的驱动&#xff0c;ADI提供了一个例程&#xff0c;即IS25LP512…

CS61B Spring 2021 proj2 gitlet

Gitlet 项目简介整体结构对象概念&#xff08;object concept&#xff09;追踪文件&#xff08;track file&#xff09;分支管理&#xff08;branch management&#xff09;持久化目录结构&#xff08;folder structure&#xff09; 命令功能与具体实现initaddcommitrmloggloba…

设计模式之三大类

目录 设计模式分类 创建型模式(Creational Patters) 结构型模式(Structural Patterns) 行为型模式(Behavioral Patterns) 命令模式(The Command Pattern) 适配器模式 Object and Class Adapters 设计模式分类 1.创建型模式(Creational Patters) Fatory Method - 本质&…

直线电机模组在激光切割机上的作用

激光切割机是将从激光器发射出的激光&#xff0c;经光路系统&#xff0c;聚焦成高功率密度的激光束。激光束照射到工件表面&#xff0c;使工件达到熔点或沸点&#xff0c;同时与光束同轴的高压气体将熔化或气化金属吹走。激光切割加工是用不可见的光束代替了传统的机械刀&#…

一起学数据结构(3)——万字解析:链表的概念及单链表的实现

上篇文章介绍了数据结构的一些基本概念&#xff0c;以及顺序表的概念和实现&#xff0c;本文来介绍链表的概念和单链表的实现&#xff0c;在此之前&#xff0c;首先来回顾以下顺序表的特点&#xff1a; 1.顺序表特点回顾&#xff1a; 1. 顺序表是一组地址连续的存储单元依次存…

<STM32>STM32F103ZET6-可调参数定时器1互补PWM输出

&#xff1c;STM32&#xff1e;STM32F103ZET6-可调参数定时器1互补PWM输出 一 基础工程 本例基础工程以正点原子战舰V3开发板配套 库函数 开发例程《实验9 PWM输出实验》&#xff1b; 在此例程基础上进行 定时器1互补PWM输出。 二 代码修改 基于例程&#xff0c;只需修改ma…

Uniapp基于微信小程序以及web端文件、图片下载,带在线文件测试地址

一、效果 传送门 二、UI视图 <scroll-view scroll-x="true" scroll-y="true" :style

第一章-数据结构绪论

第一章-数据结构绪论 数据结构的起源和相关概念 数据结构是一门研究非数值计算的程序设计问题中的操作对象&#xff0c;以及它们之间的关系和操作等相关问题的学科。 程序设计的实质是选择一个好的结构&#xff0c;再设计一种好的算法。 数据&#xff1a;是描述客观事物的符…

Zookeeper与Kafka

Zookeeper与Kafka 一、Zookeeper 概述1.Zookeeper 定义2.Zookeeper 工作机制3.Zookeeper 特点4.Zookeeper 数据结构5.Zookeeper 应用场景6.Zookeeper 选举机制 二、部署 Zookeeper 集群1.准备 3 台服务器做 Zookeeper 集群2.安装 Zookeeper3.拷贝配置好的 Zookeeper 配置文件到…