<STM32>STM32F103ZET6-可调参数定时器1互补PWM输出

news2024/11/25 1:05:31

<STM32>STM32F103ZET6-可调参数定时器1互补PWM输出

一 基础工程

本例基础工程以正点原子战舰V3开发板配套 库函数 开发例程《实验9 PWM输出实验》;
在此例程基础上进行 定时器1互补PWM输出。

二 代码修改

基于例程,只需修改main.c即可,修改后内容如下:

#include "led.h"
#include "delay.h"
#include "key.h"
#include "sys.h"
#include "usart.h"
#include "timer.h"
 
void GPIO_TIM1_Init(void)
{
    GPIO_InitTypeDef GPIO_InitStructure;
    TIM_TimeBaseInitTypeDef  TIM_TimeBaseStructure;
    TIM_OCInitTypeDef  TIM_OCInitStructure;
    TIM_BDTRInitTypeDef TIM_BDTRInitStructure;

    /* GPIOA and GPIOB clock enable */
    RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_GPIOB | RCC_APB2Periph_AFIO, ENABLE);

    /* GPIOA Configuration: Channel 1 and 2 as alternate function push-pull */
    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8 | GPIO_Pin_9;
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
    GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
    GPIO_Init(GPIOA, &GPIO_InitStructure);

    /* GPIOB Configuration: Channel 1N and 2N as alternate function push-pull */
    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_13 | GPIO_Pin_14;
    GPIO_Init(GPIOB, &GPIO_InitStructure);

    /* TIM1 clock enable */
    RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1 , ENABLE);

    /* Time base configuration */
    TIM_TimeBaseStructure.TIM_Period = 0;
    TIM_TimeBaseStructure.TIM_Prescaler = 0;
    TIM_TimeBaseStructure.TIM_ClockDivision = 0;
    TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;

    TIM_TimeBaseInit(TIM1, &TIM_TimeBaseStructure);

    /* PWM1 Mode configuration: Channel1 */
    TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;
    TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
    TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Enable;
    TIM_OCInitStructure.TIM_Pulse = 0;
    TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;
    TIM_OCInitStructure.TIM_OCNPolarity = TIM_OCNPolarity_High;
    TIM_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Set;
    TIM_OCInitStructure.TIM_OCNIdleState = TIM_OCIdleState_Reset;

    TIM_OC1Init(TIM1, &TIM_OCInitStructure);
		TIM_OC2Init(TIM1, &TIM_OCInitStructure);

    /* Automatic Output enable, Break, dead time and lock configuration */
    TIM_BDTRInitStructure.TIM_OSSRState = TIM_OSSRState_Enable;
    TIM_BDTRInitStructure.TIM_OSSIState = TIM_OSSIState_Enable;
    TIM_BDTRInitStructure.TIM_LOCKLevel = TIM_LOCKLevel_OFF;
    TIM_BDTRInitStructure.TIM_DeadTime = 0;
    TIM_BDTRInitStructure.TIM_Break = TIM_Break_Disable;
    TIM_BDTRInitStructure.TIM_BreakPolarity = TIM_BreakPolarity_High;
    TIM_BDTRInitStructure.TIM_AutomaticOutput = TIM_AutomaticOutput_Enable;

    TIM_BDTRConfig(TIM1, &TIM_BDTRInitStructure);

    TIM_Cmd(TIM1, ENABLE);
    TIM_CtrlPWMOutputs(TIM1, ENABLE);
}

void Adjust_TIM1(uint16_t freq, uint16_t deadTime, uint16_t dutyCycle)
{
    uint16_t period = (SystemCoreClock / freq) - 1;
    uint16_t pulse = (period + 1) * dutyCycle / 100;

    TIM1->ARR = period;
    TIM1->CCR1 = pulse;
    TIM1->CCR2 = pulse;
    TIM1->BDTR &= ~TIM_BDTR_DTG;
    TIM1->BDTR |= deadTime;
}

	
 int main(void)
 {		
 	u16 led0pwmval=0;
	u8 dir=1;	
	delay_init();	    	 //延时函数初始化	  
	NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); 	 //设置NVIC中断分组2:2位抢占优先级,2位响应优先级
	uart_init(115200);	 //串口初始化为115200
 	LED_Init();			     //LED端口初始化
 	TIM3_PWM_Init(8990,0);	 //不分频。PWM频率=72000000/900=80Khz PB5
	 GPIO_TIM1_Init(); //pa8  pb7  如何 使用 keil5 logic analyzer 查看GPIOA8的信号波形
	 Adjust_TIM1(7200,20,60);
   	while(1)
	{
 		delay_ms(10);	 
		if(dir)led0pwmval++;
		else led0pwmval--;

 		if(led0pwmval>300)dir=0;
		if(led0pwmval==0)dir=1;										 
		TIM_SetCompare2(TIM3,led0pwmval);		   
	}	 
 }


其中函数 void GPIO_TIM1_Init(void) 和void Adjust_TIM1(uint16_t freq, uint16_t deadTime, uint16_t dutyCycle) 是新增 内容。

GPIO_TIM1_Init():用以初始化定时器 互补输出;
Adjust_TIM1():用以修改定时器1的输出频率、占空比 以及死区时间。

三 查看波形

3.1 配置

在这里插入图片描述

3.2 debug

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.3 运行

在这里插入图片描述

四 结论

配置完成TIM1的PWM输出后 可看到两路PWM为互补输出波形。

五 拓展

在上述代码中其实以及配置了 第二组的PWM互补输出。分别是GPIOA9 和 GPIOB14,以及 使用 TIM_OC2Init(TIM1, &TIM_OCInitStructure);初始化;并通过TIM1->CCR2 = pulse;配置占空比。
拓展查看波形如下:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/845285.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Uniapp基于微信小程序以及web端文件、图片下载,带在线文件测试地址

一、效果 传送门 二、UI视图 <scroll-view scroll-x="true" scroll-y="true" :style

第一章-数据结构绪论

第一章-数据结构绪论 数据结构的起源和相关概念 数据结构是一门研究非数值计算的程序设计问题中的操作对象&#xff0c;以及它们之间的关系和操作等相关问题的学科。 程序设计的实质是选择一个好的结构&#xff0c;再设计一种好的算法。 数据&#xff1a;是描述客观事物的符…

Zookeeper与Kafka

Zookeeper与Kafka 一、Zookeeper 概述1.Zookeeper 定义2.Zookeeper 工作机制3.Zookeeper 特点4.Zookeeper 数据结构5.Zookeeper 应用场景6.Zookeeper 选举机制 二、部署 Zookeeper 集群1.准备 3 台服务器做 Zookeeper 集群2.安装 Zookeeper3.拷贝配置好的 Zookeeper 配置文件到…

vue-拦截器

第一步 起步 | Axios 中文文档 | Axios 中文网 安装 npm install axios ​ ​​​​​​ ​ ​ 第二步 ​ ​ 所有的请求都叫http协议 ​ ​ ​ ​ ​ 第三步 ​ 导入后即可使用里面的方法 ​ 任何一个东西都可以导出 ​ ​ 只有一个的时候只需要用defau…

【黑马头条之app端文章搜索ES-MongoDB】

本笔记内容为黑马头条项目的app端文章搜索部分 目录 一、今日内容介绍 1、App端搜索-效果图 2、今日内容 二、搭建ElasticSearch环境 1、拉取镜像 2、创建容器 3、配置中文分词器 ik 4、使用postman测试 三、app端文章搜索 1、需求分析 2、思路分析 3、创建索引和…

高效管理,PDM系统与BOM系统携手合作

在现代制造业中&#xff0c;PDM系统&#xff08;Product Data Management&#xff0c;产品数据管理&#xff09;和BOM系统&#xff08;Bill of Materials&#xff0c;物料清单管理&#xff09;都扮演着关键的角色。PDM系统负责产品数据的统一管理&#xff0c;而BOM系统则专注于…

fishing之第二篇Gophish钓鱼平台搭建

文章目录 一、Gophish介绍二、Gophish部署三、Gophish配置0x01 功能介绍0x02 Sending Profiles(钓鱼邮箱发送配置)0x03 Email Templates(钓鱼邮件模板)0x04 Landing Pages(伪造钓鱼页面)0x05 Users & Groups(用户和组)0x06 Campaigns(钓鱼测试)0x07 Dashboard(仪…

【SpringBoot学习笔记】02. yaml配置注入

yaml配置注入 yaml基础语法 说明&#xff1a;语法要求严格&#xff01; 1、空格不能省略 2、以缩进来控制层级关系&#xff0c;只要是左边对齐的一列数据都是同一个层级的。 3、属性和值的大小写都是十分敏感的。 yaml注入配置文件 1、在springboot项目中的resources目录…

linux命令cat proc/mtd

【cat /proc/mtd】 通过/proc虚拟文件系统读取MTD分区表&#xff0c;输出mtd中保存的系统磁盘分区信息。

TCP 三次握手,四次挥手

1、三次握手 第一次握手 SYN 等于1&#xff0c;SeqX 第二次握手 SYN等于1 ACK等于1&#xff0c;SeqY&#xff0c;AckX1 第三次SYN等于0 ACK等于1&#xff0c;SeqX1&#xff0c;AckY1 ackRow都是对应请求seqraw&#xff0c;三次握手后&#xff0c;Seq就是服务器前一个包中的ac…

享元模式(C++)

定义 运用共享技术有效地支持大量细粒度的对象。 使用场景 在软件系统采用纯粹对象方案的问题在于大量细粒度的对象会很快充斥在系统中&#xff0c;从而带来很高的运行时代价——主要指内存需求方面的代价。如何在避免大量细粒度对象问题的同时&#xff0c;让外部客户程序仍…

JDBC用法小结

JDBC用法小结 本文实例总结了JDBC的用法。分享给大家供大家参考。具体分析如下&#xff1a; DriverManger:驱动管理器类 要操作数据库&#xff0c;必须先与数据库创建连接&#xff0c;得到连接对象 public static Connection getConnection(String url, String username,Str…

GSS3 - Can you answer these queries III

GSS3 - Can you answer these queries III 题面翻译 n n n 个数&#xff0c; q q q 次操作 操作0 x y把 A x A_x Ax​ 修改为 y y y 操作1 l r询问区间 [ l , r ] [l, r] [l,r] 的最大子段和 感谢 Edgration 提供的翻译 题目描述 You are given a sequence A of N (N <…

Python(七十三)集合间的关系

❤️ 专栏简介&#xff1a;本专栏记录了我个人从零开始学习Python编程的过程。在这个专栏中&#xff0c;我将分享我在学习Python的过程中的学习笔记、学习路线以及各个知识点。 ☀️ 专栏适用人群 &#xff1a;本专栏适用于希望学习Python编程的初学者和有一定编程基础的人。无…

FANUC机器人SRVO-105和SRVO-067故障报警原因分析及处理方法

FANUC机器人SRVO-105和SRVO-067故障报警原因分析及处理方法 如下图所示,公司的一台机器人在正常工作时突然报警SRVO-105门打开或紧急停止,同时还有SRVO-067 OHAL2报警(G:1 A:2),按Reset键无法消除报警, 那么遇到这种情况,首先,我们来看一下报警说明书上的解释: 首先…

linuxARM裸机学习笔记(7)----RTC实时时钟实验

基础概念&#xff1a; I.MX6U 内部也有个RTC 模块&#xff0c;但是不叫作“ RTC ”&#xff0c;而是叫做“ SNVS ”。 SNVS 直译过来就是安全的非易性存储&#xff0c; SNVS 里面主要是一些低功耗的外设&#xff0c;包括一个 安全的实时计数器 (RTC) 、一个单调计数器 (mo…

SpringBoot集成百度人脸识别实现登陆注册功能Demo(二)

前言 上一篇SpringBoot集成百度人脸demo中我使用的是调用本机摄像头完成人脸注册&#xff0c;本次demo根据业务需求的不同我采用文件上传的方式实现人脸注册。 效果演示 注册 后端响应数据&#xff1a; 登录 后端响应数据&#xff1a; 项目结构 后端代码实现 1、BaiduAiUtil…

整理mongodb文档:删

个人博客 整理mongodb文档:删 求关注&#xff0c;哪儿不足&#xff0c;求大佬们指出&#xff0c;哪儿写的不够通俗易懂跟清晰&#xff0c;也求指出 文章概叙 本文主要是介绍了删除数据的几个方法&#xff0c;主要还是在介绍deleteMany、deleteOne以及remove&#xff0c;对于…

IL汇编 ldarg 指令学习

IL汇编代码&#xff0c; .assembly extern mscorlib {} .assembly MathLib {.ver 1 : 0 : 1 : 0 }.module MathLib.dll.namespace MyMath { .class public ansi auto MathClass extends [mscorlib]System.Object{ .method public int32 GetSquare(int32) c…

Linux c++反汇编源码细节解释说明

示例c源码: int main(int argc, char** argv) {auto sk argc;int a 11 << sk;int b 19 argc;volatile int rv a b * 8;rv * sk;return rv; } GUN x86 64bit AT&T 汇编环境下用 g -O1 -Wa,-adhln ./main.cc命令反汇编 反汇编源码: 0000 89F9 movl %ed…