37.利用linprog解 有约束条件多元变量函数最小值(matlab程序)

news2024/11/17 10:01:07

1.简述

      

linprog函数主要用来求线型规划中的最小值问题(最大值的镜像问题,求最大值只需要加个“-”)

2. 算法结构及使用方法
针对约束条件为Ax=b或Ax≤b的问题

2.1 linprog函数
x=linprog(f,A,b)
x=linprog(f,A,b,Aeq,beq)
x=linprog(f,A,b,Aeq,beq,lb,ub)
x=linprog(f,A,b,Aeq,beq,lb,ub,x0)

2.2 参数简介
f:目标函数
A:不等式约束条件矩阵
b:对应不等式右侧的矩阵
Aeq:等式约束条件矩阵
beq:不等式右侧的矩阵
Aeq:等式约束条件矩阵
beq:对应等式右侧的矩阵
lb:x的下界
ub:x的上界
x0:设置初始点x0,这个选择项只是对medium-scale算法有效。默认的large-scale算法和简单的算法忽略任何初始点。(一般用不到)

2.3 常用linprog函数及用法举例
linprog函数常用形式为:

x=linprog(f,A,b,Aep,beq,lb,ub);

例子:  学习目标:有约束条件多元变量函数最小值
 适合  计划生产盈利最大   的模式求解,

 最大值解法可转化为求解最小值算法,非常容易


   求最大值转化为求最小值  f=70*x1+120*x2  的最大值,当然x1,x2是有约束的。
   

转化为求  f=-(70*x1+120*x2)  的最小值。


   约束条件:9*x1+4*x2<=3600;4*x1+5*x2<=2000;3*x1+10*x2<=3000;-x1,-x2<

2.代码

主函数:

clc
clear
       
       f=[-70 -120];
       A=[9 4;4 5;3 10];
       B=[3600;2000;3000];
       Aeq=[];  Beq=[];
       lb=[0 0];ub=[inf inf];
        x0=[1 1];
       options=optimset('display','iter','Tolx',1e-8);

     [x,f,exitflag]=linprog(f,A,B,Aeq,Beq,lb,ub,x0,options)
     %[xmincon,fval,exitflag,output] = fmincon(@(x)-(70*x(1)+120*x(2)),x0,A,B,Aeq,Beq,lb,ub,[],options)
 

子函数:

function [x,fval,exitflag,output,lambda]=linprog(f,A,B,Aeq,Beq,lb,ub,x0,options)
%LINPROG Linear programming.
%   X = LINPROG(f,A,b) attempts to solve the linear programming problem:
%
%            min f'*x    subject to:   A*x <= b
%             x
%
%   X = LINPROG(f,A,b,Aeq,beq) solves the problem above while additionally
%   satisfying the equality constraints Aeq*x = beq. (Set A=[] and B=[] if
%   no inequalities exist.)
%
%   X = LINPROG(f,A,b,Aeq,beq,LB,UB) defines a set of lower and upper
%   bounds on the design variables, X, so that the solution is in
%   the range LB <= X <= UB. Use empty matrices for LB and UB
%   if no bounds exist. Set LB(i) = -Inf if X(i) is unbounded below;
%   set UB(i) = Inf if X(i) is unbounded above.
%
%   X = LINPROG(f,A,b,Aeq,beq,LB,UB,X0) sets the starting point to X0. This
%   option is only available with the active-set algorithm. The default
%   interior point algorithm will ignore any non-empty starting point.
%
%   X = LINPROG(PROBLEM) finds the minimum for PROBLEM. PROBLEM is a
%   structure with the vector 'f' in PROBLEM.f, the linear inequality
%   constraints in PROBLEM.Aineq and PROBLEM.bineq, the linear equality
%   constraints in PROBLEM.Aeq and PROBLEM.beq, the lower bounds in
%   PROBLEM.lb, the upper bounds in  PROBLEM.ub, the start point
%   in PROBLEM.x0, the options structure in PROBLEM.options, and solver
%   name 'linprog' in PROBLEM.solver. Use this syntax to solve at the
%   command line a problem exported from OPTIMTOOL.
%
%   [X,FVAL] = LINPROG(f,A,b) returns the value of the objective function
%   at X: FVAL = f'*X.
%
%   [X,FVAL,EXITFLAG] = LINPROG(f,A,b) returns an EXITFLAG that describes
%   the exit condition. Possible values of EXITFLAG and the corresponding
%   exit conditions are
%
%     3  LINPROG converged to a solution X with poor constraint feasibility.
%     1  LINPROG converged to a solution X.
%     0  Maximum number of iterations reached.
%    -2  No feasible point found.
%    -3  Problem is unbounded.
%    -4  NaN value encountered during execution of algorithm.
%    -5  Both primal and dual problems are infeasible.
%    -7  Magnitude of search direction became too small; no further
%         progress can be made. The problem is ill-posed or badly
%         conditioned.
%    -9  LINPROG lost feasibility probably due to ill-conditioned matrix.
%
%   [X,FVAL,EXITFLAG,OUTPUT] = LINPROG(f,A,b) returns a structure OUTPUT
%   with the number of iterations taken in OUTPUT.iterations, maximum of
%   constraint violations in OUTPUT.constrviolation, the type of
%   algorithm used in OUTPUT.algorithm, the number of conjugate gradient
%   iterations in OUTPUT.cgiterations (= 0, included for backward
%   compatibility), and the exit message in OUTPUT.message.
%
%   [X,FVAL,EXITFLAG,OUTPUT,LAMBDA] = LINPROG(f,A,b) returns the set of
%   Lagrangian multipliers LAMBDA, at the solution: LAMBDA.ineqlin for the
%   linear inequalities A, LAMBDA.eqlin for the linear equalities Aeq,
%   LAMBDA.lower for LB, and LAMBDA.upper for UB.
%
%   NOTE: the interior-point (the default) algorithm of LINPROG uses a
%         primal-dual method. Both the primal problem and the dual problem
%         must be feasible for convergence. Infeasibility messages of
%         either the primal or dual, or both, are given as appropriate. The
%         primal problem in standard form is
%              min f'*x such that A*x = b, x >= 0.
%         The dual problem is
%              max b'*y such that A'*y + s = f, s >= 0.
%
%   See also QUADPROG.

%   Copyright 1990-2018 The MathWorks, Inc.

% If just 'defaults' passed in, return the default options in X

% Default MaxIter, TolCon and TolFun is set to [] because its value depends
% on the algorithm.
defaultopt = struct( ...
    'Algorithm','dual-simplex', ...
    'Diagnostics','off', ...
    'Display','final', ...
    'LargeScale','on', ...
    'MaxIter',[], ...
    'MaxTime', Inf, ...
    'Preprocess','basic', ...
    'TolCon',[],...
    'TolFun',[]);

if nargin==1 && nargout <= 1 && strcmpi(f,'defaults')
   x = defaultopt;
   return
end

% Handle missing arguments
if nargin < 9
    options = [];
    % Check if x0 was omitted and options were passed instead
    if nargin == 8
        if isa(x0, 'struct') || isa(x0, 'optim.options.SolverOptions')
            options = x0;
            x0 = [];
        end
    else
        x0 = [];
        if nargin < 7
            ub = [];
            if nargin < 6
                lb = [];
                if nargin < 5
                    Beq = [];
                    if nargin < 4
                        Aeq = [];
                    end
                end
            end
        end
    end
end

% Detect problem structure input
problemInput = false;
if nargin == 1
    if isa(f,'struct')
        problemInput = true;
        [f,A,B,Aeq,Beq,lb,ub,x0,options] = separateOptimStruct(f);
    else % Single input and non-structure.
        error(message('optim:linprog:InputArg'));
    end
end

% No options passed. Set options directly to defaultopt after
allDefaultOpts = isempty(options);

% Prepare the options for the solver
options = prepareOptionsForSolver(options, 'linprog');

if nargin < 3 && ~problemInput
  error(message('optim:linprog:NotEnoughInputs'))
end

% Define algorithm strings
thisFcn  = 'linprog';
algIP    = 'interior-point-legacy';
algDSX   = 'dual-simplex';
algIP15b = 'interior-point';

% Check for non-double inputs
msg = isoptimargdbl(upper(thisFcn), {'f','A','b','Aeq','beq','LB','UB', 'X0'}, ...
                                      f,  A,  B,  Aeq,  Beq,  lb,  ub,   x0);
if ~isempty(msg)
    error('optim:linprog:NonDoubleInput',msg);
end

% After processing options for optionFeedback, etc., set options to default
% if no options were passed.
if allDefaultOpts
    % Options are all default
    options = defaultopt;
end

if nargout > 3
   computeConstrViolation = true;
   computeFirstOrderOpt = true;
   % Lagrange multipliers are needed to compute first-order optimality
   computeLambda = true;
else
   computeConstrViolation = false;
   computeFirstOrderOpt = false;
   computeLambda = false;
end

% Algorithm check:
% If Algorithm is empty, it is set to its default value.
algIsEmpty = ~isfield(options,'Algorithm') || isempty(options.Algorithm);
if ~algIsEmpty
    Algorithm = optimget(options,'Algorithm',defaultopt,'fast',allDefaultOpts);
    OUTPUT.algorithm = Algorithm;
    % Make sure the algorithm choice is valid
    if ~any(strcmp({algIP; algDSX; algIP15b},Algorithm))
        error(message('optim:linprog:InvalidAlgorithm'));
    end
else
    Algorithm = algDSX;
    OUTPUT.algorithm = Algorithm;
end

% Option LargeScale = 'off' is ignored
largescaleOn = strcmpi(optimget(options,'LargeScale',defaultopt,'fast',allDefaultOpts),'on');
if ~largescaleOn
    [linkTag, endLinkTag] = linkToAlgDefaultChangeCsh('linprog_warn_largescale');
    warning(message('optim:linprog:AlgOptsConflict', Algorithm, linkTag, endLinkTag));
end

% Options setup
diagnostics = strcmpi(optimget(options,'Diagnostics',defaultopt,'fast',allDefaultOpts),'on');
switch optimget(options,'Display',defaultopt,'fast',allDefaultOpts)
    case {'final','final-detailed'}
        verbosity = 1;
    case {'off','none'}
        verbosity = 0;
    case {'iter','iter-detailed'}
        verbosity = 2;
    case {'testing'}
        verbosity = 3;
    otherwise
        verbosity = 1;
end

% Set the constraints up: defaults and check size
[nineqcstr,nvarsineq] = size(A);
[neqcstr,nvarseq] = size(Aeq);
nvars = max([length(f),nvarsineq,nvarseq]); % In case A is empty

if nvars == 0
    % The problem is empty possibly due to some error in input.
    error(message('optim:linprog:EmptyProblem'));
end

if isempty(f), f=zeros(nvars,1); end
if isempty(A), A=zeros(0,nvars); end
if isempty(B), B=zeros(0,1); end
if isempty(Aeq), Aeq=zeros(0,nvars); end
if isempty(Beq), Beq=zeros(0,1); end

% Set to column vectors
f = f(:);
B = B(:);
Beq = Beq(:);

if ~isequal(length(B),nineqcstr)
    error(message('optim:linprog:SizeMismatchRowsOfA'));
elseif ~isequal(length(Beq),neqcstr)
    error(message('optim:linprog:SizeMismatchRowsOfAeq'));
elseif ~isequal(length(f),nvarsineq) && ~isempty(A)
    error(message('optim:linprog:SizeMismatchColsOfA'));
elseif ~isequal(length(f),nvarseq) && ~isempty(Aeq)
    error(message('optim:linprog:SizeMismatchColsOfAeq'));
end

[x0,lb,ub,msg] = checkbounds(x0,lb,ub,nvars);
if ~isempty(msg)
   exitflag = -2;
   x = x0; fval = []; lambda = [];
   output.iterations = 0;
   output.constrviolation = [];
   output.firstorderopt = [];
   output.algorithm = ''; % not known at this stage
   output.cgiterations = [];
   output.message = msg;
   if verbosity > 0
      disp(msg)
   end
   return
end

if diagnostics
   % Do diagnostics on information so far
   gradflag = []; hessflag = []; constflag = false; gradconstflag = false;
   non_eq=0;non_ineq=0; lin_eq=size(Aeq,1); lin_ineq=size(A,1); XOUT=ones(nvars,1);
   funfcn{1} = []; confcn{1}=[];
   diagnose('linprog',OUTPUT,gradflag,hessflag,constflag,gradconstflag,...
      XOUT,non_eq,non_ineq,lin_eq,lin_ineq,lb,ub,funfcn,confcn);
end

% Throw warning that x0 is ignored (true for all algorithms)
if ~isempty(x0) && verbosity > 0
    fprintf(getString(message('optim:linprog:IgnoreX0',Algorithm)));
end

if strcmpi(Algorithm,algIP)
    % Set the default values of TolFun and MaxIter for this algorithm
    defaultopt.TolFun = 1e-8;
    defaultopt.MaxIter = 85;
    [x,fval,lambda,exitflag,output] = lipsol(f,A,B,Aeq,Beq,lb,ub,options,defaultopt,computeLambda);
elseif strcmpi(Algorithm,algDSX) || strcmpi(Algorithm,algIP15b)

    % Create linprog options object
    algoptions = optimoptions('linprog', 'Algorithm', Algorithm);

    % Set some algorithm specific options
    if isfield(options, 'InternalOptions')
        algoptions = setInternalOptions(algoptions, options.InternalOptions);
    end

    thisMaxIter = optimget(options,'MaxIter',defaultopt,'fast',allDefaultOpts);
    if strcmpi(Algorithm,algIP15b)
        if ischar(thisMaxIter)
            error(message('optim:linprog:InvalidMaxIter'));
        end
    end
    if strcmpi(Algorithm,algDSX)
        algoptions.Preprocess = optimget(options,'Preprocess',defaultopt,'fast',allDefaultOpts);
        algoptions.MaxTime = optimget(options,'MaxTime',defaultopt,'fast',allDefaultOpts);
        if ischar(thisMaxIter) && ...
                ~strcmpi(thisMaxIter,'10*(numberofequalities+numberofinequalities+numberofvariables)')
            error(message('optim:linprog:InvalidMaxIter'));
        end
    end

    % Set options common to dual-simplex and interior-point-r2015b
    algoptions.Diagnostics = optimget(options,'Diagnostics',defaultopt,'fast',allDefaultOpts);
    algoptions.Display = optimget(options,'Display',defaultopt,'fast',allDefaultOpts);
    thisTolCon = optimget(options,'TolCon',defaultopt,'fast',allDefaultOpts);
    if ~isempty(thisTolCon)
        algoptions.TolCon = thisTolCon;
    end
    thisTolFun = optimget(options,'TolFun',defaultopt,'fast',allDefaultOpts);
    if ~isempty(thisTolFun)
        algoptions.TolFun = thisTolFun;
    end
    if ~isempty(thisMaxIter) && ~ischar(thisMaxIter)
        % At this point, thisMaxIter is either
        % * a double that we can set in the options object or
        % * the default string, which we do not have to set as algoptions
        % is constructed with MaxIter at its default value
        algoptions.MaxIter = thisMaxIter;
    end

    % Create a problem structure. Individually creating each field is quicker
    % than one call to struct
    problem.f = f;
    problem.Aineq = A;
    problem.bineq = B;
    problem.Aeq = Aeq;
    problem.beq = Beq;
    problem.lb = lb;
    problem.ub = ub;
    problem.options = algoptions;
    problem.solver = 'linprog';

    % Create the algorithm from the options.
    algorithm = createAlgorithm(problem.options);

    % Check that we can run the problem.
    try
        problem = checkRun(algorithm, problem, 'linprog');
    catch ME
        throw(ME);
    end

    % Run the algorithm
    [x, fval, exitflag, output, lambda] = run(algorithm, problem);

    % If exitflag is {NaN, <aString>}, this means an internal error has been
    % thrown. The internal exit code is held in exitflag{2}.
    if iscell(exitflag) && isnan(exitflag{1})
        handleInternalError(exitflag{2}, 'linprog');
    end

end

output.algorithm = Algorithm;

% Compute constraint violation when x is not empty (interior-point/simplex presolve
% can return empty x).
if computeConstrViolation && ~isempty(x)
    output.constrviolation = max([0; norm(Aeq*x-Beq, inf); (lb-x); (x-ub); (A*x-B)]);
else
    output.constrviolation = [];
end

% Compute first order optimality if needed. This information does not come
% from either qpsub, lipsol, or simplex.
if exitflag ~= -9 && computeFirstOrderOpt && ~isempty(lambda)
    output.firstorderopt = computeKKTErrorForQPLP([],f,A,B,Aeq,Beq,lb,ub,lambda,x);
else
    output.firstorderopt = [];
end

3.运行结果

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/838127.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

PROFINET转ETHERCAT协议网关三菱plc支持ethercat吗

捷米特JM–ECAT-PN是自主研发的一款 PROFINET 从站功能的通讯网关。该产品主要功能是将 PROFINET 网络和 ETHERCAT 网络连接起来。 捷米特JM-ECAT-PN连接到 PROFINET 总线中做为从站使用&#xff0c;连接到 ETHERCAT 总线中做为从站使用。 3.技术参数 PROFINET 技术参数 网关…

软件测试界扎心的谣言:为什么说功能测试是巨坑?

​ 前言 一般而言&#xff0c;想要持续在行业内发展&#xff0c;会选择继续提升自己的测试技能&#xff0c;而目前自动化测试作为业内最主流的技术&#xff0c;往后发展可以进阶到测试开发&#xff0c;但前提条件还是要掌握到足够好的自动化测试技术才行。包括说编程语言的学习…

918. 环形子数组的最大和;2531. 使字符串总不同字符的数目相等;1238. 循环码排列

918. 环形子数组的最大和 核心思想&#xff1a;其实这题不加环形很好做&#xff0c;就是一个动态规划或者贪心就能够解决。加了环形我们应该怎么考虑呢&#xff0c;无非就是两种&#xff0c;第1种是子数组只包含首尾的一个&#xff0c;我们直接求子数组的最大连续和即可&#…

springboot+vue农产品特产商城销售平台_50kf2 多商家

随着我国经济的高速发展与人们生活水平的日益提高&#xff0c;人们对生活质量的追求也多种多样。尤其在人们生活节奏不断加快的当下&#xff0c;人们更趋向于足不出户解决生活上的问题&#xff0c;南阳特产销售平台展现了其蓬勃生命力和广阔的前景。与此同时&#xff0c;为解决…

【Docker晋升记】No.1--- Docker工具核心组件构成(镜像、容器、仓库)及性能属性

文章目录 前言&#x1f31f;一、Docker工具&#x1f31f;二、Docker 引擎&#x1f30f;2.1.容器管理&#xff1a;&#x1f30f;2.2.镜像管理&#xff1a;&#x1f30f;2.3.资源管理&#xff1a;&#x1f30f;2.4.网络管理&#xff1a;&#x1f30f;2.5.存储管理&#xff1a;&am…

Python tkinter 制作文章搜索软件,精准定位想看文章

前言 嗨喽&#xff0c;大家好呀~这里是爱看美女的茜茜呐 无聊的时候做了一个搜索文章的软件&#xff0c;有没有更加的方便快捷不知道&#xff0c;好玩就行了 环境使用 Python 3.8 Pycharm 模块使用 import requests import tkinter as tk from tkinter import ttk impo…

Vue3_03_setup函数

1.理解&#xff1a;Vue3.0 中的一个新的配置项&#xff0c;值为一个函数。 2.setup是所有组合式 API 表演的舞台。 3.组件中所用到的&#xff1a;数据、方法等等&#xff0c;均要配置在setup中。 4.setup函数的两种返回值&#xff1a; 若返回一个对象&#xff0c;则对象中的…

DirectX12 3D立方体游戏编程选修作业-龙书

DirectX12 3D立方体游戏编程作业-龙书 作业效果配置描述文件参考书签 作业效果 配置描述文件 参考:龙书dx12 chapter-6 电子版在CSDN下载里直接下载的 配置&#xff1a;将龙书中的visual stdio2015修改为visual stdio2019; visual stdio2019组件选择&#xff1a; desktop dev…

C++类和对象入门(下)

C类和对象入门 1. Static成员1.1 Static成员的概念2.2 Static成员的特性 2.友元2.1 友元函数2.2 友元函数的特性2.3 友元类 3. 内部类3.1 内部类的概念和特性 4. 匿名对象5. 再次理解类和对象 1. Static成员 1.1 Static成员的概念 声明为static的类成员称为类的静态成员&…

libtorch::Tensor与Eigen::Tensor互相转换

1. Eigen::Tensor转libtorch::Tensor Eigen::Tensor<float, 3> a{2,4,3};a.setRandom();a(1,2,1) 11.0;/*核心*/torch::Tensor b torch::from_blob(a.data(), {1, a.dimension(2), a.dimension(1), a.dimension(0)});/*核心*/b b.permute({0, 3, 2, 1});std::cout <…

Qt QThread的moveToThread方法使用

Qt线程简介 从 Qt4.4 版本之后&#xff0c;因为 QThread 的 run 方法创建新线程这样实现与 Qt 设计的理念不符&#xff0c;Qt 主推使用 moveToThread 方法来创建新线程。QThread 应该被看做是操作系统线程的接口或控制点&#xff0c;而不应该包含需要在新线程中运行的代码。需…

C++数据结构之BST(二叉搜索树)的实现

目录 01.BST的介绍02.BST 要实现的对外方法03.摘要04.查找节点4.1四个引用&#xff0c;都有妙用4.2递归版4.3非递归版 05.插入节点5.1利用search的返回值5.2更新高度的注意事项5.3插入算法的完整代码 06.删除节点6.1框架6.2单分支&#xff0c;直接替代6.3双分支&#xff0c;化繁…

实现天气预报走势图

实现效果&#xff1a; 这里我用的天气接口是网上开源的&#xff0c;可以自己找一下。 稍微简单封装了一下axiso以及接口 封装的axios&#xff1a; // import { useUserStore } from /stores/user import axios from axios import router from /router import { ElMessage } f…

P14 电路定理——巧妙-灵性-智慧

1、替代定理 图示表示&#xff1a; 叠加定理和齐性定理只能用于线性电路&#xff0c;但是替代定理无论线不线性都可以用。 常见的&#xff1a;线性电路将某复杂支路等效成电压源或电流源之后&#xff0c;就可以使用叠加原理了。 引入两个相互抵消的电压源&#xff0c;拿其中一…

【数字IC基础】低功耗设计

低功耗技术 功耗构成静态功耗(漏电功耗)动态功耗翻转功耗(Switch Power)短路功耗(Internal Power) 不同类型的标准单元的功耗 低功耗设计方法降低芯片工作电压多阈值工艺方法电源门控&#xff08;Power Gating&#xff09;多电压域(Multi-Voltage Domain)体偏置门控时钟一个简单…

AWS Amplify 部署node版本18报错修复

Amplify env&#xff1a;Amazon Linux:2 Build Error : Specified Node 18 but GLIBC_2.27 or GLIBC_2.28 not found on build 一、原因 报错原因是因为默认情况下&#xff0c;AWS Amplify 使用 Amazon Linux:2 作为其构建镜像&#xff0c;并自带 GLIBC 2.26。不过&#xff0c;…

【M波段2D双树(希尔伯特)小波多分量图像去噪】基于定向M波段双树(希尔伯特)小波对多分量/彩色图像进行降噪研究(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…

使用 OpenCV 和 Python 卡通化图像-附源码

介绍 在本文中,我们将构建一个有趣的应用程序,它将卡通化提供给它的图像。为了构建这个卡通化器应用程序,我们将使用 python 和 OpenCV。这是机器学习令人兴奋的应用之一。在构建此应用程序时,我们还将了解如何使用 easygui、Tkinter 等库。在这里,您必须选择图像,然后应…

二叉树的遍历(先序遍历,中序遍历,后序遍历)递归与非递归算法

目录 一、先序遍历题目链接1.递归2.非递归 二、中序遍历题目链接1.递归2.非递归 三、后序遍历题目链接1.递归2.非递归 一、先序遍历 先序遍历&#xff1a;先遍历一颗树的根节点&#xff0c;后遍历左子树&#xff0c;最后遍历右子树 先序遍历序列&#xff1a; 1 -> 2 -> 4…

20.4 HTML 表单

1. form表单 <form>标签: 用于创建一个表单, 通过表单, 用户可以向网站提交数据. 表单可以包含文本输入字段, 复选框, 单选按钮, 下拉列表, 提交按钮等等. 当用户提交表单时, 表单数据会发送到服务器进行处理.action属性: 应指向一个能够处理表单数据的服务器端脚本或UR…