机器学习深度学习——池化层

news2024/11/11 22:19:18

👨‍🎓作者简介:一位即将上大四,正专攻机器学习的保研er
🌌上期文章:机器学习&&深度学习——卷积的多输入多输出通道
📚订阅专栏:机器学习&&深度学习
希望文章对你们有所帮助

这其实也是torch.nn模块的知识,在之前的内容中有提到过,这边就是简单总结和回顾一下了,大家可以看看之前的内容:
机器学习&&深度学习——torch.nn模块

池化层

  • 池化层
  • 最大池化层和平均池化层
  • 填充、步幅和多个通道
  • 总结

池化层

处理图像时,要逐渐降低隐藏表示的空间分辨率、聚集信息,这样随着神经网络中层叠的上升,每个神经元对其敏感的感受野(输入)就越大。
而最终的机器学习任务通常会和全局图像的问题有关(如”判断图像中的是否是一只猫“),最后一层的神经元应该对整个输入的全局敏感。
此外,当检测底层的特征时(比如判断猫的边缘),我们希望这些特征具有平移不变性。
池化层就具有两个重要的作用:降低卷积层对位置的敏感性,同时降低对空间降采样表示的敏感性。

最大池化层和平均池化层

下面给出一个输入:
在这里插入图片描述
用窗口大小2×2的最大池化层进行池化操作,最后得到:
在这里插入图片描述
以垂直边缘检测为例:
在这里插入图片描述
如上图所示,可以看出2×2的最大池化层可以容忍1个像素的移位,卷积层仍然可以识别到模式。
下面实现pool2d函数,实现池化层的前向传播,同时构建输入张量X并验证二维最大池化层、平均池化层的输出:

import torch
from torch import nn
from d2l import torch as d2l


def pool2d(X, pool_size, mode='max'):
    p_h, p_w = pool_size
    Y = torch.zeros((X.shape[0] - p_h + 1, X.shape[1] - p_w + 1))
    for i in range(Y.shape[0]):
        for j in range(Y.shape[1]):
            if mode == 'max':
                Y[i, j] = X[i: i + p_h, j: j + p_w].max()
            elif mode == 'avg':
                Y[i, j] = X[i: i + p_h, j: j + p_w].mean()
    return Y

X = torch.tensor([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]])
print(pool2d(X, (2, 2)))
print(pool2d(X, (2, 2), 'avg'))

填充、步幅和多个通道

1、池化层与卷积层类似,都有填充和步幅
2、没有可学习的参数
3、在每个输入通道应用池化层以获得相应的输出通道
4、输出通道数=输入通道数

总结

1、对于给定输入元素,最大池化层会输出该窗口内的最大值,平均池化层会输出该窗口内的平均值。
2、主要优点之一是减轻卷积层对位置的过度敏感。
3、我们可以指定池化层的填充和步幅。
4、使用最大池化层以及大于1的步幅,可减少空间维度(如高度和宽度)。
5、池化层的输出通道数与输入通道数相同。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/834576.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

powershell 自动补全

我在zsh中使用智能提示 zsh-autosuggestions已经习惯了,而在windows中的终端默认没有智能提示,很起来不舒服。那么有没有什么替代呢? 安装powershell-7.3 我的windows 10默认安装的是powershell-5.1.19,所以我们先来升级一下。 …

基于facenet+faiss开发构建人脸识别系统

facenet是一款非常经典的神经网络模型,它可以直接学习从人脸图像到欧几里德空间的映射(直接将人脸映射到欧几里得空间)。在欧几里德空间中,距离直接对应于人脸相似性的度量。一旦这个空间产生,使用标准技术,将FaceNet嵌入作为特征…

p元素使用伪元素::before实现小圆点,换行缩进

p元素使用伪元素实现小圆点,默认换行第二行会与小圆点平行,图2是想要的样式 小圆点代码 p::before{content: "";display: inline-block;width: 6px;height: 6px;border-radius: 50%;background-color: #D8D8D8;margin: 0 5px 2px 0; }换行缩…

如何使用动态代理ip来突破限制

在如今数字化时代,互联网已经成为人们获取信息、交流互动、进行商业活动的重要平台。然而,许多网站为了保护安全和用户体验,采取了各种访问限制和封禁措施,使得用户在大规模网站访问和数据采集中面临种种困惑。作为动态IP代理产品…

数据可视化:Matplotlib详解及实战

1 Matplotlib介绍 Matplotlib是Python中最常用的可视化工具之一,可以非常方便地创建海量类型的2D图表和一些基本的3D图表。 Matplotlib提供了一个套面向绘图对象编程的API接口,能够很轻松地实现各种图像的绘制,并且它可以配合Python GUI工具(…

汽车维修保养记录查询API:实现车辆健康状况一手掌握

在当今的数字化世界中,汽车维修保养记录的查询和管理变得前所未有地简单和便捷。通过API,我们可以轻松地获取车辆的维修和保养记录,从而实现对手中车辆健康状况的实时掌握。 API(应用程序接口)是进行数据交换和通信的标…

pytorch实战-图像分类(二)(模型训练及验证)(基于迁移学习(理解+代码))

目录 1.迁移学习概念 2.数据预处理 3.训练模型(基于迁移学习) 3.1选择网络,这里用resnet 3.2如果用GPU训练,需要加入以下代码 3.3卷积层冻结模块 3.4加载resnet152模 3.5解释initialize_model函数 3.6迁移学习网络搭建 3.…

基于 Flink Paimon 实现 Streaming Warehouse 数据一致性管理

摘要:本文整理自字节跳动基础架构工程师李明,在 Apache Paimon Meetup 的分享。本篇内容主要分为四个部分: 背景 方案设计 当前进展 未来规划 点击查看原文视频 & 演讲PPT 一、背景 ​ 早期的数仓生产体系主要以离线数仓为主&#xf…

【Leetcode】二叉树的最近公共祖先,二叉搜索树转换成排好序的双向链表,前序遍历与中序遍历构造二叉树

一.二叉树的最近公共祖先 链接 二叉树的最近公共祖先 题目再现 『Ⅰ』思路一:转换成相交链表问题 观察上图,节点1和节点4的最近公共祖先是3,这是不是很像相交链表的问题,关于相交链表,曾经我在另一篇文章里写到过&a…

WPS Office AI实战:智能表单,信息收集神器

前面我们已经介绍了WPS里常用的文字、表格、演示文稿等等,在WPS AI的武装下重新发挥出智能化的威力,今天来聊聊表单的智能化应用会是什么样。 金山智能表单进行数据轻松收集,通过对话或拍照创建表单,回收结果还能自动生成数据报告…

回归预测 | MATLAB实现SO-CNN-BiGRU蛇群算法优化卷积双向门控循环单元多输入单输出回归预测

回归预测 | MATLAB实现SO-CNN-BiGRU蛇群算法优化卷积双向门控循环单元多输入单输出回归预测 目录 回归预测 | MATLAB实现SO-CNN-BiGRU蛇群算法优化卷积双向门控循环单元多输入单输出回归预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 MATLAB实现SO-CNN-BiGRU蛇群算法…

浅谈管廊智能监控和报警系统设计探究

贾丽丽 安科瑞电气股份有限公司 上海嘉定 201801 摘要:综合地下管廊为我国城市的发展发挥了积极的推动作用,为了确保综合地下管廊基本功能得以真正的发挥出来,有必要将智能监控系统融入综合地下管廊智能管理系统构建中,以便于实…

windows物理机 上安装centos ,ubuntu,等多个操作系统的要点

一、摘要 一般情况下,我们的笔记本或工作电脑都默认安装windows 分几个区,当下是win7 win8 win 10 win11 等,突然我们有需求需要安装个centos ,后面我们应当怎么做,要点是什么?一定要根据网上的贴子一步步来…

【雕爷学编程】MicroPython动手做(37)——驱动LCD与图文显示3

MixPY——让爱(AI)触手可及 MixPY布局 主控芯片:K210(64位双核带硬件FPU和卷积加速器的 RISC-V CPU) 显示屏:LCD_2.8寸 320*240分辨率,支持电阻触摸 摄像头:OV2640,200W像素 扬声器&#…

python绘制六边形风车,用python画简单的风车

本篇文章给大家谈谈用python画简单的风车,以及python绘制六边形风车,希望对各位有所帮助,不要忘了收藏本站喔。 风车的动画,过程如下:1)绘制风车形状A,2)擦除风车形状A,3…

【LinearAlgebra】Chapter 12 - Linear Algebra in Probability Statistics

文章目录 Chapter 12 - Linear Algebra in Probability & StatisticsVariance (around athe mean) 方差(接近均值)Continuous Probability Distributions 连续概率分布Mean and Variance of p ( x ) p(x) p(x) p ( x ) p(x) p(x) 的均值和方差Norm…

idea-常用插件汇总

idea-常用插件汇总 码云插件 这个插件是码云提供的ps-码云是国内的一款类似github的代码托管工具。 Lombok Lombok是一个通用Java类库,能自动插入编辑器并构建工具,简化Java开发。通过添加注解的方式,不需要为类编写getter或setter等方法…

[MYSQL]查询单位时间消耗量

请求哪位大神给我优化一下mysql语句. 数据库表:(日/月/年 数据表和data_hour结构一样,懒得复制了,不然太长) DROP TABLE IF EXISTS data_source;#数据源 create table IF not EXISTS data_source ( num int unsigned not null auto_increment PRIMARY KEY COMMENT序号 …

关于win11 debian wsl 子系统安装启动docker一直starting,无法启动

首先我先说明,我的步骤都是按照官网步骤来的 通过官网的操作步骤 通过测试命令 sudo docker run hello-world得到下面的命令,我们通过启动命令 sudo service docker start 执行结果如下图 也就是说无法启动,一直显示在启动中 遇到这种情况…

Ubuntu安装git

使用 apt-get install git 安装git 报错: 这个错误信息通常表示您的系统上没有可用的 git 软件包。这可能是因为您的软件源列表中没有包含 git 软件包所在的软件源,或者您的软件源列表已经过期。 解决: 如果您使用的是 Ubuntu 或类似…