目录
1.迁移学习概念
2.数据预处理
3.训练模型(基于迁移学习)
3.1选择网络,这里用resnet
3.2如果用GPU训练,需要加入以下代码
3.3卷积层冻结模块
3.4加载resnet152模
3.5解释initialize_model函数
3.6迁移学习网络搭建
3.7优化器
3.8训练模块(可以理解为主函数)
3.9开始训练
3.10微调
4.测试模型
4.1加载训练好的模型
4.2测试数据预处理
4.3数据展示
4.4提取测试数据集
4.5计算提取数据集的预测结果
4.6展示预测结果
参考文献
1.迁移学习概念
先说一下深度学习常见的问题:
1.数据集不够,通常用数据增强解决。
2.参数难以确定,训练时间长,这就需要用迁移学习来解决
什么叫迁移学习呢:比方说有一个对100w的自行车数据集,并用VGG模型训练好的网络,而此时你想训练一个1w自行车数据集(虽然对象一样,但采集的数据会不同),也用VGG模型进行训练,你发现,你们数据集的对象一样,选用的网络模型一样,此时在初始化自己模型权重(就是卷积层,池化层和全连接层的参数)时,可以用人家训练好的模型参数(如果不这样就需要随机初始化模型权重),这样做可以节省大量寻找最优参数的时间,又可以保证参数的准确。
总结:迁移学习就是用别人的东西训练自己的东西,但要注意,为了使用别人的模型参数,要保证自己的数据对象、网络结构、输入和输出数据的结构和别人相同。比方说,别人识别狗,你不能识别 猫,别人用VGG你不能用resnet,别人输入和输入图像大小是224×224.你不能是256×256。
进一步理解迁移学习的使用1:看下图最大的红框,表示卷积层,当用别人的模型时,对卷积层的两种处理方式。
A:作为自己模型权重的初始化参数。
B:冻结卷积层网络,意思是直接用别人的参数,不再更新。冻结卷积层网络又分几种情况。
B1:当数据量小时,冻结第二大红框表示的卷积层,剩下卷积层进行更新。因为数据量小时,容易过拟合,直接用别人呢参数最好。
B2:当数据量中等时冻结最小红框表示的卷积层,剩下的卷积层进行更行。
B3:当数据量足够大时,不冻结卷积层,用A的方法,只作为自己模型权重的初始化参数。数据量大时,虽然对象一样,但毕竟数据不同,会有一定差异,更新参数是最优选择。
进一步理解迁移学习的使用2:说完卷积层,在说一下全连接层,必须要注意不管卷积层选A还是B,全连接层都是要更新的,原因在于,别人模型进行图像分类可能是进行1000个分类,而你只进行100或者999个分类,那么全连接层的参数肯定是不同的。
2.数据预处理
上接该文:pytorch实战-图像分类(一)(数据预处理)
3.训练模型(基于迁移学习)
3.1选择网络,这里用resnet
model_name = 'resnet' #可选的比较多 ['resnet', 'alexnet', 'vgg', 'squeezenet', 'densenet', 'inception']
#是否用人家训练好的特征来做
feature_extract = True
3.2如果用GPU训练,需要加入以下代码
# 是否用GPU训练
train_on_gpu = torch.cuda.is_available()
if not train_on_gpu:
print('CUDA is not available. Training on CPU ...')
else:
print('CUDA is available! Training on GPU ...')
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
3.3卷积层冻结模块
def set_parameter_requires_grad(model, feature_extracting):
if feature_extracting:
for param in model.parameters():
param.requires_grad = False
3.4加载resnet152模
注意:resnet152模型就是别人的模型。
model_ft = models.resnet152()
model_ft
3.5解释initialize_model函数
本小节只是截取pytorch官网的一个例子,用initialize_model说明在pytoch中迁移学习怎么使用,不属于本文代码
具体操作如下:
1.下载别人的模型参数,这里下载restnet152模型
2.选择需要冻结的卷积层
3.改变全连接层的输出个数,这里将1000改为102
def initialize_model(model_name, num_classes, feature_extract, use_pretrained=True):
# 选择合适的模型,不同模型的初始化方法稍微有点区别
model_ft = None
input_size = 0
if model_name == "resnet":
""" Resnet152
"""
model_ft = models.resnet152(pretrained=use_pretrained) #下载resnet152模型
set_parameter_requires_grad(model_ft, feature_extract) #选择冻结哪部分卷积层
num_ftrs = model_ft.fc.in_features #全连接层的输入比方说全连接层是2048×1000,这就是2048.
model_ft.fc = nn.Sequential(nn.Linear(num_ftrs, 102),
nn.LogSoftmax(dim=1)) #原resnet152的全连接层输出是1000,自己模型需要的输出是102,进行改动。
input_size = 224
return model_ft, input_size
3.6迁移学习网络搭建
model_ft, input_size = initialize_model(model_name, 102, feature_extract, use_pretrained=True)
#GPU计算
model_ft = model_ft.to(device)
# 模型保存
filename='checkpoint.pth'
# 是否训练所有层
params_to_update = model_ft.parameters()
print("Params to learn:")
if feature_extract:
params_to_update = []
for name,param in model_ft.named_parameters():
if param.requires_grad == True:
params_to_update.append(param)
print("\t",name)
else:
for name,param in model_ft.named_parameters():
if param.requires_grad == True:
print("\t",name)
3.7优化器
就是用该方法更新模型参数
# 优化器设置
optimizer_ft = optim.Adam(params_to_update, lr=1e-2)
scheduler = optim.lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)#学习率每7个epoch衰减成原来的1/10
#最后一层已经LogSoftmax()了,所以不能nn.CrossEntropyLoss()来计算了,nn.CrossEntropyLoss()相当于logSoftmax()和nn.NLLLoss()整合
criterion = nn.NLLLoss()
3.8训练模块(可以理解为主函数)
def train_model(model, dataloaders, criterion, optimizer, num_epochs=25, is_inception=False,filename=filename):
since = time.time() #
best_acc = 0
"""
checkpoint = torch.load(filename)
best_acc = checkpoint['best_acc']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
model.class_to_idx = checkpoint['mapping']
"""
model.to(device)
val_acc_history = []
train_acc_history = []
train_losses = []
valid_losses = []
LRs = [optimizer.param_groups[0]['lr']]
best_model_wts = copy.deepcopy(model.state_dict())
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
print('-' * 10)
# 训练和验证
for phase in ['train', 'valid']:
if phase == 'train':
model.train() # 训练
else:
model.eval() # 验证
running_loss = 0.0
running_corrects = 0
# 把数据都取个遍
for inputs, labels in dataloaders[phase]:
inputs = inputs.to(device)
labels = labels.to(device)
# 清零
optimizer.zero_grad()
# 只有训练的时候计算和更新梯度
with torch.set_grad_enabled(phase == 'train'):
if is_inception and phase == 'train':
outputs, aux_outputs = model(inputs)
loss1 = criterion(outputs, labels)
loss2 = criterion(aux_outputs, labels)
loss = loss1 + 0.4*loss2
else:#resnet执行的是这里
outputs = model(inputs)
loss = criterion(outputs, labels)
_, preds = torch.max(outputs, 1)
# 训练阶段更新权重
if phase == 'train':
loss.backward()
optimizer.step()
# 计算损失
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
epoch_loss = running_loss / len(dataloaders[phase].dataset)
epoch_acc = running_corrects.double() / len(dataloaders[phase].dataset)
time_elapsed = time.time() - since
print('Time elapsed {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))
print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))
# 得到最好那次的模型
if phase == 'valid' and epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = copy.deepcopy(model.state_dict())
state = {
'state_dict': model.state_dict(),
'best_acc': best_acc,
'optimizer' : optimizer.state_dict(),
}
torch.save(state, filename)
if phase == 'valid':
val_acc_history.append(epoch_acc)
valid_losses.append(epoch_loss)
scheduler.step(epoch_loss)
if phase == 'train':
train_acc_history.append(epoch_acc)
train_losses.append(epoch_loss)
print('Optimizer learning rate : {:.7f}'.format(optimizer.param_groups[0]['lr']))
LRs.append(optimizer.param_groups[0]['lr'])
print()
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))
print('Best val Acc: {:4f}'.format(best_acc))
# 训练完后用最好的一次当做模型最终的结果
model.load_state_dict(best_model_wts)
return model, val_acc_history, train_acc_history, valid_losses, train_losses, LRs
3.9开始训练
model_ft, val_acc_history, train_acc_history, valid_losses, train_losses, LRs = train_model(model_ft, dataloaders, criterion, optimizer_ft, num_epochs=20, is_inception=(model_name=="inception"))
3.10微调
在2.9中得到的模型,是冻结了卷积层,只训练了全连接层,所以此时希望在此基础上再对卷积层进行训练。
for param in model_ft.parameters():
param.requires_grad = True
# 再继续训练所有的参数,学习率调小一点
optimizer = optim.Adam(params_to_update, lr=1e-4)
scheduler = optim.lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)
# 损失函数
criterion = nn.NLLLoss()
# Load the checkpoint,加载自己的模型
checkpoint = torch.load(filename)
best_acc = checkpoint['best_acc']
model_ft.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
#model_ft.class_to_idx = checkpoint['mapping']
model_ft, val_acc_history, train_acc_history, valid_losses, train_losses, LRs = train_model(model_ft, dataloaders, criterion, optimizer, num_epochs=10, is_inception=(model_name=="inception"))
4.测试模型
4.1加载训练好的模型
model_ft, input_size = initialize_model(model_name, 102, feature_extract, use_pretrained=True)
# GPU模式
model_ft = model_ft.to(device)
# 保存文件的名字
filename='seriouscheckpoint.pth'
# 加载模型
checkpoint = torch.load(filename)
best_acc = checkpoint['best_acc']
model_ft.load_state_dict(checkpoint['state_dict'])
4.2测试数据预处理
1.测试数据处理方法需要跟训练时一直才可以
2.crop操作的目的是保证输入的大小是一致的
3.标准化操作也是必须的,用跟训练数据相同的mean和std,但是需要注意一点训练数据是在0-1上进行标准化,所以测试数据也需要先归一化
4.PyTorch中颜色通道是第一个维度,跟很多工具包都不一样,需要转换
def process_image(image_path):
# 读取测试数据
img = Image.open(image_path)
# Resize,thumbnail方法只能进行缩小,所以进行了判断
if img.size[0] > img.size[1]:
img.thumbnail((10000, 256))
else:
img.thumbnail((256, 10000))
# Crop操作
left_margin = (img.width-224)/2
bottom_margin = (img.height-224)/2
right_margin = left_margin + 224
top_margin = bottom_margin + 224
img = img.crop((left_margin, bottom_margin, right_margin,
top_margin))
# 相同的预处理方法
img = np.array(img)/255
mean = np.array([0.485, 0.456, 0.406]) #provided mean
std = np.array([0.229, 0.224, 0.225]) #provided std
img = (img - mean)/std
# 注意颜色通道应该放在第一个位置
img = img.transpose((2, 0, 1))
return img
4.3数据展示
def imshow(image, ax=None, title=None):
"""展示数据"""
if ax is None:
fig, ax = plt.subplots()
# 颜色通道还原
image = np.array(image).transpose((1, 2, 0))
# 预处理还原
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
image = std * image + mean
image = np.clip(image, 0, 1)
ax.imshow(image)
ax.set_title(title)
return ax
4.4提取测试数据集
# 得到一个batch的测试数据
dataiter = iter(dataloaders['valid'])
images, labels = dataiter.next()
model_ft.eval()
if train_on_gpu:
output = model_ft(images.cuda())
else:
output = model_ft(images)
4.5计算提取数据集的预测结果
_, preds_tensor = torch.max(output, 1)
preds = np.squeeze(preds_tensor.numpy()) if not train_on_gpu else np.squeeze(preds_tensor.cpu().numpy())
preds
4.6展示预测结果
fig=plt.figure(figsize=(20, 20))
columns =4
rows = 2
for idx in range (columns*rows):
ax = fig.add_subplot(rows, columns, idx+1, xticks=[], yticks=[])
plt.imshow(im_convert(images[idx]))
ax.set_title("{} ({})".format(cat_to_name[str(preds[idx])], cat_to_name[str(labels[idx].item())]),
color=("green" if cat_to_name[str(preds[idx])]==cat_to_name[str(labels[idx].item())] else "red"))
plt.show()
参考文献
1.6-训练结果与模型保存_哔哩哔哩_bilibili