MATLB|实时机会约束决策及其在电力系统中的应用

news2024/12/28 3:28:22

目录

一、概述

二、数学模型 

2.1 机会约束决策的情景方法

2.2 带有测量的情景方法

三、 机会约束决策的一种快速方法

3.1 通过仿射变换进行近似调节

3.2 可行域的仿射变换

3.3 两阶段决策算法

四、算例——配电网

4.1 防止过电压的有功功率削减

4.2 数值模拟

 4.3 运行结果

5 Matlab代码实现


一、概述

许多工程问题可以表述为不确定下的决策实例,即当问题参数不确定时,做出满足某些给定约束的具有成本效益的决策的问题。一种自然的方法是做出一个保证对于未知参数的任何可能的可接受值都是可行的决定,因此采用最坏情况范式。在某些应用中,这种稳健的方法产生易于处理的程序,可以找到最佳解决方案。这样的解决方案在可实现的性能方面可能非常保守:决策可能会受到参数的极值的影响,这些极值极不可能但对寻求最优决策的可行区域有严重影响。

第二种方法在于制定所谓的机会约束决策问题。在这些问题中,可以容忍对于在参数空间中具有最小概率度量的一组参数值可以违反问题的约束,因此不太可能实现。这种方法允许在安全性(旨在违反约束的概率)与性能(决策成本)之间进行权衡。机会约束问题通常是非凸的并且难以解决,即使具有已知参数值的原始问题是凸的。然而,它们可以通过采用所谓的场景方法来有效地解决,其中随机约束被确定性约束所取代,通过对参数不确定性进行采样获得。如果约束的数量足够大,则可以以高置信度保证机会约束意义上的可行性。相反,也可以保证通过这种方法获得的解决方案的成本。

在本文中,我们考虑了具有特定结构的机会约束决策问题:一方面,我们假设有关决策问题未知参数的一些先验信息是已知的,以样本的形式存在;另一方面,我们假设可以通过测量收集有关这些参数真实值的进一步信息。我们对场景方法进行了专门化,以便可以有效地使用先验样本以及可用的度量,以生成满足机会约束的可行区域。这导致了一个两阶段算法,由样本的离线预处理组成,然后是在线部分,需要在测量可用时立即执行。该在线部分在计算时间和内存占用方面都非常轻量级,因此适合在嵌入式系统中实现。作为选择的一个应用,我们考虑配电网中微型发电机的控制。

在第二节中,我们简要回顾了情景方法,并用测量制定了机会受限的决策问题。在第三节,展示了如何近似未知参数的后验分布,并且分析了一种解决机会约束决策问题的快速算法。在第四节中,说明所提出的配电网实时运行算法的有效性。

二、数学模型 

2.1 机会约束决策的情景方法

考虑机会约束决策问题:

       

其中 x ∈ Rn 是决策变量,f (x) 是凸成本,w \in \Omega \subseteq \mathbb{R}^{m} 是建模为随机变量的未知干扰,z \in \mathbb{R}^{l} 是常数项。我们假设随机变量 w 的支持被赋予了一个 σ -代数 D 并且 P在 D 上定义。最后, ∈ (0, 1) 是期望的违反约束的概率。

一般的机会约束决策问题是非凸的,并且通常在计算上难以处理。请注意,我们假设线性约束在随机变量中是仿射的。在这种情况下,只要 w 的基本分布已知,就可以获得分析结果,为机会约束问题重新表述为凸问题提供条件。在任何其他情况下,情景方法都是将随机程序转换为这种形式的确定性问题:

其中\left\{​{w}^{(i)}\right\}是随机扰动的 N 个样本。如果 N 足够大,那么这个数学描述等价于上面一个数学描述。

场景方法明显没有分布,这意味着没有对干扰w的概率分布进行任何假设。通过需要根据此类分布进行采样的量\left\{​{w}^{(i)}\right\},关于w分布的信息仍然隐含存在。场景方法的这一特点使其对于无法获得可靠的干扰第一原理模型,但可以使用历史数据的应用非常有吸引力。 

2.2 带有测量的情景方法

在某些应用中,关于干扰 w 的在线信息可能是可用的。例如,尽管可能事先可以获得关于 w 分布的先验信息,但在做出决定时可能会进行一些直接测量。我们将具有测量的机会约束决策问题形式化为:

 其中 y = Hw 是扰动的线性测量,其中 H 是全行秩,\mathbb{P}[\cdot \mid \cdot]表示条件概率。情景方法的直接应用,如 (3) 中的,将产生如下形式的确定性优化方程:

其中w_{y}^{(i)}是由测量 y = Hw 确定的条件概率分布的样本 .

最后一种设置似乎抵消了实时操作场景方法的有效性,因为样本w_{y}^{(i)}

只有在测量 y 可用后才需要生成。历史样本的使用使得这种新信息的整合变得困难。此外,由此产生的优化问题 (5) 仍然存在大量典型的冗余约束,这对直接使用场景方法进行快速实时决策提出了计算挑战。在下一节中,我们将展示如何通过样本的离线预处理阶段成功解决这两个问题,然后是在线测量驱动的决策步骤。 

三、 机会约束决策的一种快速方法

3.1 通过仿射变换进行近似调节

3.2 可行域的仿射变换

3.3 两阶段决策算法

四、算例——配电网

4.1 防止过电压的有功功率削减

4.2 数值模拟

部分代码: 

%% ====鲁棒优化===========

disp('鲁棒')
gmax = (vmax - 1) / max(Rg);
voltageSeries = testCurtailmentStrategy(testGrid, historicalPowerDemands, gmax);
percentilePlot(voltageSeries);
title(sprintf('鲁棒优化——发电量:% 0.3f MW', gmax));
ylabel('电压 [p.u.]');

%% 预期

disp('预期')
Ed = mean(historicalPowerDemands, 2);
gmax = min((vmax - 1 + R*Ed)./Rg);
voltageSeries = testCurtailmentStrategy(testGrid, historicalPowerDemands, gmax);
percentilePlot(voltageSeries);
title(sprintf('预期优化 - 发电量:%0.3f MW', gmax));
ylabel('电压[p.u.]');


%% 机会约束

disp('高斯')
dstd = std(R(genBus,:)*historicalPowerDemands);
gmax = min((vmax - 1 + R(genBus,:)*Ed - 1.6449*dstd)./Rg(genBus));
voltageSeries = testCurtailmentStrategy(testGrid, historicalPowerDemands, gmax);
percentilePlot(voltageSeries);
title(sprintf('假设高斯的机会约束优化 - 发电:%0.3f MW', gmax));
ylabel('电压[p.u.]');

 4.3 运行结果

           

 

 

5 Matlab代码实现

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/83316.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

第二十章 多源最短路之Floyd算法的思路即实现(超强解析)

第二十章 多源最短路之Floyd算法的思路即实现一、什么是多源最短路二、Floyd算法1、算法思路2、算法模板(1)问题:(2)代码模板:(3)代码分析:一、什么是多源最短路 我们之前了解到的d…

远程Jenkins新增Mac电脑节点,你知道怎么操作么?

目录:导读 一,前言 二,Mac电脑准备 1,网络环境 2,设置允许远程登录 三,Jenkins新增节点 1,新建节点 2,配置节点 3,节点启动代理 四,写在最后 一&…

算法竞赛入门【码蹄集进阶塔335题】(MT2176-2200)

算法竞赛入门【码蹄集进阶塔335题】(MT2176-2200) 文章目录算法竞赛入门【码蹄集进阶塔335题】(MT2176-2200)前言为什么突然想学算法了?为什么选择码蹄集作为刷题软件?目录1. MT2176 围栏木桩2. MT2177 学习时间3. MT2178 最长子段…

【设计模式】观察者模式Observe(Java)

文章目录1. 观察者模式定义2. 类图3.Java实现3.1 定义主题Interface3.2 定义观察者Interface3.3 定义具体主题3.4 定义具体观察者3.5 定义测试主方法1. 观察者模式定义 观察者模式定义了对象之间的一对多依赖,这样以来,当一个对象改变状态时&#xff0c…

如何利用ArcGIS探究环境与生态因子对水体、土壤、大气污染物等?

如何利用ArcGIS实现电子地图可视化表达?如何利用ArcGIS分析空间数据?如何利用ArcGIS提升SCI论文的层次?制图是地理数据展现的直观形式,也是地理数据应用的必要基础 本文从ArcGIS的基本操作、ArcGIS 的空间数据分析及ArcGIS 的高级…

使用MyBatis Generator自动创建代码

使用MyBatis Generator自动创建代码安装jdk下载jar 和配置xml文件自动生成代码报错分析与解决Table configuration with catalog null, schema null, and table public.user_t did not resolve to any tablesThe specified target project directory src does not exist安装jdk…

深入解决Linux内存管理之page fault处理

说明: Kernel版本:4.14ARM64处理器,Contex-A53,双核使用工具:Source Insight 3.5, Visio 1. 概述 内核实现只是在进程的地址空间建立好了vma区域,并没有实际的虚拟地址到物理地址的映射操作。…

基于Pyqt5实现笔记本摄像头拍照及PaddleOCR测试

在上一篇文章《基于百度飞桨PaddleOCR的图片文字识别》的基础上,做了个简单的扩展: 1、通过Pyqt5做个简单的UI界面; 2、通过OpenCV操作笔记本摄像头进行视频显示、拍照等功能; 3、加载图片; 4、对拍照图片或者加载的图…

Python贝叶斯回归分析住房负担能力数据集

我想研究如何使用pymc3在贝叶斯框架内进行线性回归。根据从数据中学到的知识进行推断。 最近我们被客户要求撰写关于贝叶斯回归的研究报告,包括一些图形和统计输出。 视频:线性回归中的贝叶斯推断与R语言预测工人工资数据案例 贝叶斯推断线性回归与R语言…

猿如意---Visual Studio手把手教学安装和下载.

亲自为大家示范如何使用猿如意以及在猿如意当中下载,安装和使用python3.10版本,让大家喜欢上这款好用的app—猿如意。 文章目录前言一、手把手教你猿如意的安装、下载二、手把手教你Visual Studio的安装、下载1.找到我需要的工具2.我需要的工具的安装、下…

最新Crack:foxit pdf sdk 8.4.1_win_java

Foxit pdf sdk一个功能强大、易于使用的核心 API,用于呈现、查看、注释、签名、保护和管理 PDF 中的表单。 Foxit pdf sdk开发人员的最佳工具 快速整合 C、C#、C、Python 和 Java 中功能强大且易于使用的核心 API。系统要求:Windows XP、Vista、7、8 和…

【云原生 | Kubernetes 实战】12、K8s 四层代理 Service 入门到企业实战应用(上)

目录 一、Service 四层代理基本介绍 1.1 四层负载均衡 Service:概念、原理解读 1 为什么要有Service? 2 Service 概述 3 Service 工作原理 4 kubernetes 集群中有三类 IP 地址 二、创建 Service 资源 2.1 Service 的四种类型 2.2 Service 的端口…

k8s编程operator实战之云编码平台——①架构设计

文章目录1、想法来源2、初步设想2.1 通过反向代理的方式访问后端Pod3、架构设计3.1 技术栈3.2 架构设计k8s编程operator系列:k8s编程operator——(1) client-go基础部分k8s编程operator——(2) client-go中的informerk8s编程operator——(3) 自定义资源CRDk8s编程op…

SpringSecurity管理接口权限

使用SpringSecurity管理具体接口访问权限。 需要先有授权服务器和资源服务器 Springboot利用Security做OAuth2授权验证_LO嘉嘉VE的博客-CSDN博客 Springboot利用Security做OAuth2资源服务器_LO嘉嘉VE的博客-CSDN博客 配置接口具体访问权限再有以上两个的基础上就比较简单了…

antd-vue 累加表单编辑和删除(完善版)

一、业务场景&#xff1a; 最近在使用Antd-Vue组件库的时候&#xff0c;发现在累加表单 时没有直接可以用的&#xff0c;必须自己在官网上手动合并几个才能实现&#xff0c;为了大家后面遇到和我一样的问题&#xff0c;给大家分享一下 二、具体实现步骤&#xff1a; <temp…

新一代最强开源UI自动化测试神器Playwright(Java版)环境搭建

Playwright 是专门为满足端到端测试的需要而创建的。Playwright 支持所有现代渲染引擎&#xff0c;包括 Chromium、WebKit 和 Firefox。在 Windows、Linux 和 macOS 上进行本地测试或在 CI 上进行测试&#xff0c;无外设或带本机移动仿真。 一.安装 在JAVA中&#xff0c;使用…

嵌入式技术之IAP,自从有了它老板再也不担心我的代码了!(上)

1.惨痛的教训 那是一个严寒的冬日&#xff0c;客户在现场使用我们公司新研发的设备&#xff0c;设备最初设计可以允许最多连接20个温湿度传感器&#xff0c;但是由于现场空间非常大&#xff0c;客户要求连接30个温湿度传感器。这个需求修改非常简单&#xff0c;只用修改程序中…

帮公司面试了个要25K的测试,我问了他这些问题...

深耕IT行业多年&#xff0c;我们发现&#xff0c;对于一个程序员而言&#xff0c;能去到一线互联网公司&#xff0c;会给我们以后的发展带来多大的影响。 很多人想说&#xff0c;这个我也知道&#xff0c;但是进大厂实在是太难了&#xff0c;简历投出去基本石沉大海&#xff0…

spring security安全认证登录全流程分析

文章目录前言一、登录时序图二、配置与代码1.引入库2.代码文件参考文档前言 本文章主要从spring security安全认证登录内部调用流程来流程分析登录过程。 一、登录时序图 时序原图 二、配置与代码 1.引入库 pom.xml&#xff1a; <!-- Spring框架基本的核心工具 -->&…

截至到2022年12月12日,知网最新改进 YOLO 核心论文合集 | 22篇创新点速览

截至到2022年12月12日&#xff0c;知网最新改进YOLO核心论文合集 本篇博文仅供学习交流&#xff0c;不对文章质量进行评价&#xff0c;请尊重每一位同学的科研成果&#x1f91d;。 文章目录截至到2022年12月12日&#xff0c;知网最新改进YOLO核心论文合集引言&#x1f4a1;0. 什…