Kubernetes——理论基础

news2025/1/18 10:03:41

Kubernetes——理论基础

  • 一、Kubernetes 概述
      • 1.K8S 是什么?
      • 2.为什么要用 K8S?
      • 3.Kubernetes 主要功能
  • 二、Kubernetes 集群架构与组件
  • 三、Master 组件
      • 1.Kube-apiserver
      • 2.Kube-controller-manager
      • 3.Kube-scheduler
      • 4.配置存储中心——etcd
  • 四、Node 组件
      • 1.Kubelet
      • 2.Kube-Proxy
      • 3.docker 或 rocket
  • 五、Kubernetes 核心概念
      • 1.Pod
      • 2.Pod 控制器
      • 3.Label
      • 4.Label 选择器(Label selector)
      • 5.Service
      • 6.Ingress
      • 7.Name
      • 8.Namespace
  • 六、常见的K8S安装部署方式
      • 1.Minikube
      • 2.Kubeadm
      • 3.二进制安装部署
  • 七、k8s部署 二进制与高可用的区别
      • 1.二进制部署
      • 2.kubeadm部署

一、Kubernetes 概述

1.K8S 是什么?

K8S 的全称为 Kubernetes (K12345678S),PS:“嘛,写全称也太累了吧,不如整个缩写”。

作用
用于自动部署、扩展和管理“容器化(containerized)应用程序”的开源系统。
可以理解成 K8S 是负责自动化运维管理多个容器化程序(比如 Docker)的集群,是一个生态极其丰富的容器编排框架工具。

由来
K8S由google的Borg系统(博格系统,google内部使用的大规模容器编排工具)作为原型,后经GO语言延用Borg的思路重写并捐献给CNCF基金会开源。

云原生基金会(CNCF)于2015年12月成立,隶属于Linux基金会。CNCF孵化的第一个项目就是Kubernetes,随着容器的广泛使用,Kubernetes已经成为容器编排工具的事实标准。

含义:
词根源于希腊语的 舵手、飞行员

官网:
https://kubernetes.io

GitHub:
https://github.com/kubernetes/kubernetes

2.为什么要用 K8S?

试想下传统的后端部署办法:把程序包(包括可执行二进制文件、配置文件等)放到服务器上,接着运行启动脚本把程序跑起来,同时启动守护脚本定期检查程序运行状态、必要的话重新拉起程序。

设想一下,如果服务的请求量上来,已部署的服务响应不过来怎么办?传统的做法往往是,如果请求量、内存、CPU超过阈值做了告警,运维人员马上再加几台服务器,部署好服务之后,接入负载均衡来分担已有服务的压力。
这样问题就出现了:从监控告警到部署服务,中间需要人力介入!那么,有没有办法自动完成服务的部署、更新、卸载和扩容、缩容呢?
而这就是 K8S 要做的事情:自动化运维管理容器化(Docker)程序。

K8S是Google开源的容器集群管理系统,在Docker等容器技术的基础上,为容器化的应用提供部署运行、资源调度、服务发现和动态伸缩等一系列完整功能,提高了大规模容器集群管理的便捷性。

3.Kubernetes 主要功能

●跨主机编排容器。
●更充分地利用硬件资源来最大化地满足企业应用的需求。
●控制与自动化应用的部署与升级。
●为有状态的应用程序挂载和添加存储器。
●线上扩展或缩减容器化应用程序与它们的资源。
●声明式的容器管理,保证所部署的应用按照我们部署的方式运作。
●通过自动布局、自动重启、自动复制、自动伸缩实现应用的状态检查与自我修复。
●为多个容器提供服务发现和负载均衡,使得用户无需考虑容器IP问题。

二、Kubernetes 集群架构与组件

K8S 是属于主从设备模型(Master-Slave 架构),即有 Master 节点负责集群的调度、管理和运维,Slave 节点是集群中的运算工作负载节点。
在 K8S 中,主节点一般被称为 Master 节点,而从节点则被称为 Worker Node 节点,每个 Node 都会被 Master 分配一些工作负载。

Master 组件可以在群集中的任何计算机上运行,但建议 Master 节点占据一个独立的服务器。因为 Master 是整个集群的大脑,如果 Master 所在节点宕机或不可用,那么所有的控制命令都将失效。除了 Master,在 K8S 集群中的其他机器被称为 Worker Node 节点,当某个 Node 宕机时,其上的工作负载会被 Master 自动转移到其他节点上去。

三、Master 组件

1.Kube-apiserver

用于暴露 Kubernetes API,任何资源请求或调用操作都是通过 kube-apiserver 提供的接口进行。以 HTTP Restful API 提供接口服务,所有对象资源的增删改查和监听操作都交给 API Server 处理后再提交给 Etcd 存储。

可以理解成 API Server 是 K8S 的请求入口服务。API Server 负责接收 K8S 所有请求(来自 UI 界面或者 CLI 命令行工具), 然后根据用户的具体请求,去通知其他组件干活。可以说 API Server 是 K8S 集群架构的大脑。

2.Kube-controller-manager

运行管理控制器,是 K8S 集群中处理常规任务的后台线程,是 K8S 集群里所有资源对象的自动化控制中心。
在 K8S 集群中,一个资源对应一个控制器,而 Controller manager 就是负责管理这些控制器的。

由一系列控制器组成,通过 API Server 监控整个集群的状态,并确保集群处于预期的工作状态,比如当某个 Node 意外宕机时,Controller Manager 会及时发现并执行自动化修复流程,确保集群始终处于预期的工作状态。

这些控制器主要包括:

  1. Node Controller(节点控制器):负责在节点出现故障时发现和响应。
  2. Replication Controller(副本控制器):负责保证集群中一个 RC(资源对象 Replication Controller)所关联的 Pod 副本数始终保持预设值。可以理解成确保集群中有且仅有 N 个 Pod 实例,N 是 RC 中定义的 Pod 副本数量。
  3. Endpoints Controller(端点控制器):填充端点对象(即连接 Services 和 Pods),负责监听 Service 和对应的 Pod 副本的变化。 可以理解端点是一个服务暴露出来的访问点,如果需要访问一个服务,则必须知道它的 endpoint。
  4. Service Account & Token Controllers(服务帐户和令牌控制器):为新的命名空间创建默认帐户和 API 访问令牌。
  5. ResourceQuota Controller(资源配额控制器):确保指定的资源对象在任何时候都不会超量占用系统物理资源。
  6. Namespace Controller(命名空间控制器):管理 namespace 的生命周期。
  7. Service Controller(服务控制器):属于 K8S 集群与外部的云平台之间的一个接口控制器。

3.Kube-scheduler

是负责资源调度的进程,根据调度算法为新创建的 Pod 选择一个合适的 Node 节点。

可以理解成 K8S 所有 Node 节点的调度器。当用户要部署服务时,Scheduler 会根据调度算法选择最合适的 Node 节点来部署 Pod。
预选策略(predicate)
优选策略(priorities)

API Server 接收到请求创建一批 Pod ,API Server 会让 Controller-manager 按照所预设的模板去创建 Pod,Controller-manager 会通过 API Server 去找 Scheduler 为新创建的 Pod 选择最适合的 Node 节点。比如运行这个 Pod 需要 2C4G 的资源,Scheduler 会通过预选策略过滤掉不满足策略的 Node 节点。Node 节点中还剩多少资源是通过汇报给 API Server 存储在 etcd 里,API Server 会调用一个方法找到 etcd 里所有 Node 节点的剩余资源,再对比 Pod 所需要的资源,如果某个 Node 节点的资源不足或者不满足 预选策略的条件则无法通过预选。预选阶段筛选出的节点,在优选阶段会根据优选策略为通过预选的 Node 节点进行打分排名, 选择得分最高的 Node。例如,资源越富裕、负载越小的 Node 可能具有越高的排名。

4.配置存储中心——etcd

K8S 的存储服务。etcd 是分布式键值存储系统,存储了 K8S 的关键配置和用户配置,K8S 中仅 API Server 才具备读写权限,其他组件必须通过 API Server 的接口才能读写数据。

四、Node 组件

1.Kubelet

Node 节点的监视器,以及与 Master 节点的通讯器。Kubelet 是 Master 节点安插在 Node 节点上的“眼线”,它会定时向 API Server 汇报自己 Node 节点上运行的服务的状态,并接受来自 Master 节点的指示采取调整措施。

从 Master 节点获取自己节点上 Pod 的期望状态(比如运行什么容器、运行的副本数量、网络或者存储如何配置等), 直接跟容器引擎交互实现容器的生命周期管理,如果自己节点上 Pod 的状态与期望状态不一致,则调用对应的容器平台接口(即 docker 的接口)达到这个状态。

管理镜像和容器的清理工作,保证节点上镜像不会占满磁盘空间,退出的容器不会占用太多资源。

PS:Kubelet真是个苦逼老父亲,又当爹又当妈,一把屎一把尿把这些容器拉扯大,还要给它们养老送终。。。。

总结:
在 Kubernetes 集群中,在每个 Node(又称 Worker Node)上都会启动一个 kubelet 服务进程。该进程用于处理 Master 下发到本节点的任务,管理 Pod 及 Pod 中的容器。每个 kubelet 进程都会在 API Server 上注册节点自身的信息,定期向 Master 汇报节点资源的使用情况,并通过 cAdvisor 监控容器和节点资源。

2.Kube-Proxy

在每个 Node 节点上实现 Pod 网络代理,是 Kubernetes Service 资源的载体,负责维护网络规则和四层负载均衡工作。 负责写入规则至iptables、ipvs实现服务映射访问的。

Kube-Proxy 本身不是直接给 Pod 提供网络,Pod 的网络是由 Kubelet 提供的,Kube-Proxy 实际上维护的是虚拟的 Pod 集群网络。
Kube-apiserver 通过监控 Kube-Proxy 进行对 Kubernetes Service 的更新和端点的维护。

在 K8S 集群中微服务的负载均衡是由 Kube-proxy 实现的。Kube-proxy 是 K8S 集群内部的负载均衡器。它是一个分布式代理服务器,在 K8S 的每个节点上都会运行一个 Kube-proxy 组件。

3.docker 或 rocket

容器引擎,运行容器,负责本机的容器创建和管理工作。
当 kubernetes 把 pod 调度到节点上,节点上的 kubelet会指示 docker 启动特定的容器。接着,kubelet 会通过 docker 持续地收集容器的信息, 然后提交到主节点上。docker 会如往常一样拉取容器镜像、启动或停止容器。不同点仅仅在于这是由自动化系统控制而非管理员在每个节点上手动操作的。

五、Kubernetes 核心概念

Kubernetes 包含多种类型的资源对象:Pod、Label、Service、Replication Controller 等。

所有的资源对象都可以通过 Kubernetes 提供的 kubectl 工具进行增、删、改、查等操作,并将其保存在 etcd 中持久化存储。

Kubernets其实是一个高度自动化的资源控制系统,通过跟踪对比etcd存储里保存的资源期望状态与当前环境中的实际资源状态的差异,来实现自动控制和自动纠错等高级功能。

1.Pod

Pod是 Kubernetes 创建或部署的最小/最简单的基本单位,一个 Pod 代表集群上正在运行的一个进程。
可以把 Pod 理解成豌豆荚,而同一 Pod 内的每个容器是一颗颗豌豆。

一个 Pod 由一个或多个容器组成,Pod 中容器共享网络、存储和计算资源,在同一台 Docker 主机上运行。
一个 Pod 里可以运行多个容器,又叫边车模式(SideCar)。而在生产环境中一般都是单个容器或者具有强关联互补的多个容器组成一个 Pod。

同一个 Pod 之间的容器可以通过 localhost 互相访问,并且可以挂载 Pod 内所有的数据卷;但是不同的 Pod 之间的容器不能用 localhost 访问,也不能挂载其他 Pod 的数据卷。

K8S创建Pod的工作流程

  1. 用户通过客户端发送创建pod的请求到master节点上的apiserver
  2. apiserver会先把相关的请求信息写入到etcd中,再找controller-manager 根据预设的资源模板创建pod清单
  3. 然后controller-manager会通过apiserver去找scheduler为新创建的pod选择最适合的Node节点
  4. scheduler会通过调度算法的预选策略和优选策略筛选出最适合的Node节点
  5. 然后再通过apiserver找到对应的Node节点上的kubelet去创建和管理pod
  6. kubelet会直接跟容器引擎交互来管理容器的生命周期
  7. 用户通过创建承载在kube-proxy上的service资源,写入相关的网络规则,实现对pod的服务发现和负载均衡

在这里插入图片描述

2.Pod 控制器

Pod 控制器是 Pod 启动的一种模版,用来保证在K8S里启动的 Pod 应始终按照用户的预期运行(副本数、生命周期、健康状态检查等)。

K8S 内提供了众多的 Pod 控制器,常用的有以下几种:

  1. Deployment:无状态应用部署。Deployment 的作用是管理和控制 Pod 和 ReplicaSet,管控它们运行在用户期望的状态中。
  2. Replicaset:确保预期的 Pod 副本数量。ReplicaSet 的作用就是管理和控制 Pod,管控他们好好干活。但是,ReplicaSet 受控于 Deployment。
  3. Daemonset:确保所有节点运行同一类 Pod,保证每个节点上都有一个此类 Pod 运行,通常用于实现系统级后台任务。
  4. Statefulset:有状态应用部署
  5. Job:一次性任务。根据用户的设置,Job 管理的 Pod 把任务成功完成就自动退出了。
  6. Cronjob:周期性计划性任务

可以理解成 Deployment 就是总包工头,主要负责监督底下的工人 Pod 干活,确保每时每刻有用户要求数量的 Pod 在工作。如果一旦发现某个工人 Pod 不行了,就赶紧新拉一个 Pod 过来替换它。而ReplicaSet 就是总包工头手下的小包工头。
从 K8S 使用者角度来看,用户会直接操作 Deployment 部署服务,而当 Deployment 被部署的时候,K8S 会自动生成要求的 ReplicaSet 和 Pod。用户只需要关心 Deployment 而不操心 ReplicaSet。
资源对象 Replication Controller 是 ReplicaSet 的前身,官方推荐用 Deployment 取代 Replication Controller 来部署服务。

3.Label

标签,是 K8S 特色的管理方式,便于分类管理资源对象。
Label 可以附加到各种资源对象上,例如 Node、Pod、Service、RC 等,用于关联对象、查询和筛选。
一个 Label 是一个 key-value 的键值对,其中 key 与 value 由用户自己指定。
一个资源对象可以定义任意数量的Label,同一个Label 也可以被添加到任意数量的资源对象中,也可以在对象创建后动态添加或者删除。
可以通过给指定的资源对象捆绑一个或多个不同的 Label,来实现多维度的资源分组管理功能。

与 Label 类似的,还有 Annotation(注释)。
区别在于有效的标签值必须为63个字符或更少,并且必须为空或以字母数字字符([a-z0-9A-Z])开头和结尾,中间可以包含横杠(-)、下划线(_)、点(.)和字母或数字。注释值则没有字符长度限制。

4.Label 选择器(Label selector)

给某个资源对象定义一个 Label,就相当于给它打了一个标签;随后可以通过标签选择器(Label selector)查询和筛选拥有某些 Label 的资源对象。
标签选择器目前有两种:基于等值关系(等于、不等于)和基于集合关系(属于、不属于、存在)。

5.Service

在K8S的集群里,虽然每个Pod会被分配一个单独的IP地址,但由于Pod是有生命周期的(它们可以被创建,而且销毁之后不会再启动),随时可能会因为业务的变更,导致这个 IP 地址也会随着 Pod 的销毁而消失。

Service 就是用来解决这个问题的核心概念。
K8S 中的 Service 并不是我们常说的“服务”的含义,而更像是网关层,可以看作一组提供相同服务的Pod的对外访问接口、流量均衡器。
Service 作用于哪些 Pod 是通过标签选择器来定义的。
在 K8S 集群中,Service 可以看作一组提供相同服务的 Pod 的对外访问接口。客户端需要访问的服务就是 Service 对象。每个 Service 都有一个固定的虚拟 ip(这个 ip 也被称为 Cluster IP),自动并且动态地绑定后端的 Pod,所有的网络请求直接访问 Service 的虚拟 ip,Service 会自动向后端做转发。
Service 除了提供稳定的对外访问方式之外,还能起到负载均衡(Load Balance)的功能,自动把请求流量分布到后端所有的服务上,Service 可以做到对客户透明地进行水平扩展(scale)。
而实现 service 这一功能的关键,就是 kube-proxy。kube-proxy 运行在每个节点上,监听 API Server 中服务对象的变化, 可通过以下三种流量调度模式: userspace(废弃)、iptables(濒临废弃)、ipvs(推荐,性能最好)来实现网络的转发。

Service 是 K8S 服务的核心,屏蔽了服务细节,统一对外暴露服务接口,真正做到了“微服务”。比如我们的一个服务 A,部署了 3 个副本,也就是 3 个 Pod; 对于用户来说,只需要关注一个 Service 的入口就可以,而不需要操心究竟应该请求哪一个 Pod。
优势非常明显:一方面外部用户不需要感知因为 Pod 上服务的意外崩溃、K8S 重新拉起 Pod 而造成的 IP 变更, 外部用户也不需要感知因升级、变更服务带来的 Pod 替换而造成的 IP 变化。

6.Ingress

Service 主要负责 K8S 集群内部的网络拓扑,那么集群外部怎么访问集群内部呢?这个时候就需要 Ingress 了。Ingress 是整个 K8S 集群的接入层,负责集群内外通讯。
Ingress 是 K8S 集群里工作在 OSI 网络参考模型下,第7层的应用,对外暴露的接囗,典型的访问方式是 http/https。
Service 只能进行第四层的流量调度,表现形式是 ip+port。Ingress 则可以调度不同业务域、不同URL访问路径的业务流量。
比如:客户端请求 http://www.kgc.com:port —> Ingress —> Service —> Pod

7.Name

由于 K8S 内部,使用 “资源” 来定义每一种逻辑概念(功能),所以每种 “资源”,都应该有自己的 “名称”。
“资源” 有 api 版本(apiversion)、类别(kind)、元数据(metadata)、定义清单(spec)、状态(status)等配置信息。
“名称” 通常定义在 “资源” 的 “元数据” 信息里。在同一个 namespace 空间中必须是唯一的。

8.Namespace

随着项目增多、人员增加、集群规模的扩大,需要一种能够逻辑上隔离 K8S 内各种 “资源” 的方法,这就是 Namespace。
Namespace 是为了把一个 K8S 集群划分为若干个资源不可共享的虚拟集群组而诞生的。
不同 Namespace 内的 “资源” 名称可以相同,相同 Namespace 内的同种 “资源”,“名称” 不能相同。
合理的使用 K8S 的 Namespace,可以使得集群管理员能够更好的对交付到 K8S 里的服务进行分类管理和浏览。
K8S 里默认存在的 Namespace 有:default、kube-system、kube-public 等。
查询 K8S 里特定 “资源” 要带上相应的 Namespace。

六、常见的K8S安装部署方式

1.Minikube

Minikube是一个工具,可以在本地快速运行一个单节点微型K8S,仅用于学习、预览K8S的一些特性使用。
部署地址:https://kubernetes.io/docs/setup/minikube

2.Kubeadm

Kubeadm也是一个工具,提供kubeadm init和kubeadm join,用于快速部署K8S集群,相对简单。
https://kubernetes.io/docs/reference/setup-tools/kubeadm/kubeadm/

3.二进制安装部署

生产首选,从官方下载发行版的二进制包,手动部署每个组件和自签TLS证书,组成K8S集群,新手推荐。
https://github.com/kubernetes/kubernetes/releases

Kubeadm降低部署门槛,但屏蔽了很多细节,遇到问题很难排查。如果想更容易可控,推荐使用二进制包部署Kubernetes集群,虽然手动部署麻烦点,期间可以学习很多工作原理,也利于后期维护。

七、k8s部署 二进制与高可用的区别

1.二进制部署

部署难,管理方便,集群伸展性能好
更稳定,集群规模到达一定的规模(几百个节点、上万个Pod),二进制稳定性是要高于kubeadm部署
遇到故障,宿主机起来了,进程也会起来

2.kubeadm部署

部署简单,管理难
是以一种容器管理容器的方式允许的组件及服务,故障恢复时间比二进制慢
遇到故障,启动宿主机,再启动进程,最后去启动容器,集群才能恢复,速度比二进制慢

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/829348.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

城市供水管网水力模型的基本概念及理论

1.1引言 城市供水管网系统由大量管材各异、管径各异、铺设年代各异的管道,泵站,阀门, 水塔等多元素构成,因此决定了供水管网系统是一个拓扑结构庞杂、运行工况多变的巨系统。以前国内供水公司对铺设在地面以下的供水管网多以经验…

HCIP的mgre实验

题目 拓扑图 IP地址配置和缺省 R1 [r1]int g0/0/1 [r1-GigabitEthernet0/0/1]ip add 192.168.1.1 24 Aug 2 2023 20:38:20-08:00 r1 %%01IFNET/4/LINK_STATE(l)[0]:The line protocol IP on the interface GigabitEthernet0/0/1 has entered the UP state. [r1-GigabitEtherne…

【雕爷学编程】Arduino动手做(181)---Maixduino AI开发板4

37款传感器与执行器的提法,在网络上广泛流传,其实Arduino能够兼容的传感器模块肯定是不止这37种的。鉴于本人手头积累了一些传感器和执行器模块,依照实践出真知(一定要动手做)的理念,以学习和交流为目的&am…

云环境中使用飞蛾火焰和萨尔普群算法组合的工作流调度(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…

AcWing 202. 最幸运的数字

AcWing 202. 最幸运的数字 思路&#xff1a; Code: #include<bits/stdc.h> using namespace std; typedef long long LL; int gcd(LL n,int m) {return m?gcd(m,n%m):n; } LL get_euler(LL x) { //求欧拉函数LL resx;for(int i2;i<x/i;i) {if(x%i0) {while(x%i0)…

经典CNN(三):DenseNet算法实战与解析

&#x1f368; 本文为&#x1f517;365天深度学习训练营中的学习记录博客&#x1f356; 原作者&#xff1a;K同学啊|接辅导、项目定制 1 前言 在计算机视觉领域&#xff0c;卷积神经网络&#xff08;CNN&#xff09;已经成为最主流的方法&#xff0c;比如GoogleNet&#xff0c;…

结算功能实现(小兔鲜儿)【Vue3】

退出登录 - 清空购物车列表 业务需求 在用户退出登录时,除了清除用户信息之外,也需要把购物车数据清空 // 清除购物车const clearCart () > {cartList.value []}// 退出时清除用户信息const clearUserInfo () > {userInfo.value {}// 执行清除购物车的actioncartS…

2023年攻防演练利器之必修高危漏洞合集(包含详细修复建议)

2023年攻防演练利器之必修高危漏洞合集&#xff08;包含详细修复建议&#xff09; 下载地址见盘&#xff1a; 链接&#xff1a;https://pan.baidu.com/s/1WeCC7oXFieDs4tBOh7bmWA?pwd12u4 提取码&#xff1a;12u4

PyTorch 中的累积梯度

https://stackoverflow.com/questions/62067400/understanding-accumulated-gradients-in-pytorch 有一个小的计算图&#xff0c;两次前向梯度累积的结果&#xff0c;可以看到梯度是严格相等的。 代码&#xff1a; import numpy as np import torchclass ExampleLinear(torch…

MongoDB文档--基本安装-linux安装(mongodb环境搭建)-docker安装(挂载数据卷)-以及详细版本对比

阿丹&#xff1a; 前面了解了mongodb的一些基本概念。本节文章对安装mongodb进行讲解以及汇总。 官网教程如下&#xff1a; 安装 MongoDB - MongoDB-CN-Manual 版本特性 下面是各个版本的选择请在安装以及选择版本的时候参考一下&#xff1a; MongoDB 2.x 版本&#xff1a…

TensorRT学习笔记--基于YoloV8检测图片和视频

1--完整项目 完整项目地址&#xff1a;https://github.com/liujf69/TensorRT-Demo git clone https://github.com/liujf69/TensorRT-Demo.gitcd TRT_YoloV8 2--模型转换 cd yolov8python gen_wts.py 3--编译项目 mkdir buildcd build cmake .. # 需要更改 CMakeLists.txt…

postgresSQL Extended Query执行过程和sharding-proxy的处理

pg Extended Query PostgreSQL: Documentation: 15: 55.2. Message Flow 多个阶段&#xff0c;可复用 Parse → DESCRIBE statement → SYNC Parse 解析&#xff0c; 将 sql 文本字符串&#xff0c;解析成 named preparedStatement 语句&#xff08;生命周期随session&#x…

数据安全能力框架模型-详细解读(一)

8月30日&#xff0c;奇安信集团正式发布“数据安全能力框架”&#xff0c;以及“数据安全概念运行图”&#xff08;数据安全ConOps&#xff09;&#xff0c;旨在为数字化转型不断深入的大型政企客户以及业内伙伴&#xff0c;提供基于甲方视角的数据安全全面图景&#xff0c;以及…

GESP2023年6月C++一级客观题

一、单选题&#xff08;每题 2 分&#xff0c;共 30 分&#xff09; 以下不属于计算机输出设备的有&#xff08; &#xff09;。 A. 麦克风 B. 音箱 C. 打印机 D. 显示器 ChatGPT 是 OpenAI 研发的聊天机器人程序&#xff0c;它能通过理解和学习人类的语言 来进行对话&#xf…

ES6之Promise、Class类与模块化(Modules)

目录 PromiseClass类extendssuper Modules 模块系统export default 和对应importexport 和 import Promise Promise 是 ES6 引入的一种用于处理异步操作的对象。 它解决了传统回调函数&#xff08;callback&#xff09;模式中容易出现的回调地狱和代码可读性差的问题。 Promis…

Vue.js2+Cesium 四、WMS 服务加载,控制自图层显隐

Vue.js2Cesium 四、WMS 服务加载&#xff0c;控制自图层显隐 Demo <template><divid"cesium-container"style"width: 100%; height: 100%;"><div class"layer_container"><button id"btn">清除</button&g…

大模型开发(十六):从0到1构建一个高度自动化的AI项目开发流程(中)

全文共1w余字&#xff0c;预计阅读时间约40~60分钟 | 满满干货(附代码)&#xff0c;建议收藏&#xff01; 本文目标&#xff1a;通过LtM提示流程实现自动构建符合要求的函数&#xff0c;并通过实验逐步完整测试code_generate函数功能。 代码下载点这里 一、介绍 此篇文章为…

Redis两种持久化方案RDB持久化和AOF持久化

Redis持久化 Redis有两种持久化方案&#xff1a; RDB持久化AOF持久化 1.1.RDB持久化 RDB全称Redis Database Backup file&#xff08;Redis数据备份文件&#xff09;&#xff0c;也被叫做Redis数据快照。简单来说就是把内存中的所有数据都记录到磁盘中。当Redis实例故障重启…

docker---网络

docker网络 使用–publish或-p标志使端口可用于 Docker 外部的服务。这会在主机中创建一条防火墙规则&#xff0c;将容器端口映射到 Docker 主机上通往外界的端口。 -p 8080:80&#xff1a;将容器中的TCP端口80映射到Docker主机上的端口8080。 -p 192.168.1.100:8080:80&…

说明学习委员之作业管理系统—后端部分

项目背景 学习委员收集作业的过程&#xff0c;繁琐且曲折&#xff0c;作者充分理解并体谅为大家服务的苦逼学习委员&#xff0c;以此为出发点和灵感&#xff0c;设计并开发了此套作业管理系统&#xff0c;希望能帮助各位提高效率&#xff0c;早日摆脱重复机械式的工作&#xf…