Promise用法

news2024/11/19 16:39:51

学习了promise之后,有点懂但让我说又说不出来,参考别人的记录一下。

1.什么是promise?

2.promise解决了什么问题

3.es6 promise语法

(1)then链式操作语法

(2)catch的语法

(3)all的语法

(4)race的语法

一、什么是Promise?我们用Promise来解决什么问题?

1.什么是promise?

Promise 是异步编程的一种解决方案:从语法上讲,promise是一个对象,从它可以获取异步操作的消息;promise有三种状态: pending(等待态),fulfiled(成功态),rejected(失败态);状态一旦改变,就不会再变。创造promise实例后,它会立即执行。

2.promise解决了什么问题?

  • 回调地狱问题。代码难以维护, 常常第一个的函数的输出是第二个函数的输入这种现象
  • promise可以支持多个并发的请求,获取并发请求中的数据

这个promise可以解决异步的问题,本身不能说promise是异步的

 二、es6 promise用法大全

Promise是一个构造函数,自己身上有all、reject、resolve这几个眼熟的方法,原型上有then、catch等同样很眼熟的方法。

那就new一个

let p = new Promise((resolve, reject) => {
    //做一些异步操作
    setTimeout(() => {
        console.log('执行完成');
        resolve('我是成功!!');
    }, 2000);
});

Promise的构造函数接收一个参数:函数,并且这个函数需要传入两个参数:

  • resolve :异步操作执行成功后的回调函数
  • reject:异步操作执行失败后的回调函数

then 链式操作的用法  :

从表面上看,Promise只是能够简化层层回调的写法,而实质上,Promise的精髓是“状态”,用维护状态、传递状态的方式来使得回调函数能够及时调用,它比传递callback函数要简单、灵活的多。所以使用Promise的正确场景是这样的:

p.then((data) => {
    console.log(data);
})
.then((data) => {
    console.log(data);
})
.then((data) => {
    console.log(data);
});

reject的用法 :

把Promise的状态置为rejected,这样我们在then中就能捕捉到,然后执行“失败”情况的回调。看下面的代码。

    let p = new Promise((resolve, reject) => {
        //做一些异步操作
      setTimeout(function(){
            var num = Math.ceil(Math.random()*10); //生成1-10的随机数
            if(num<=5){
                resolve(num);
            }
            else{
                reject('数字太大了');
            }
      }, 2000);
    });
    p.then((data) => {
            console.log('resolved',data);
        },(err) => {
            console.log('rejected',err);
        }
    ); 

 then中传了两个参数,then方法可以接受两个参数,第一个对应resolve的回调,第二个对应reject的回调。所以我们能够分别拿到他们传过来的数据。多次运行这段代码,你会随机得到下面两种结果:                    

或者 

 catch的用法

我们知道Promise对象除了then方法,还有一个catch方法,它是做什么用的呢?其实它和then的第二个参数一样,用来指定reject的回调。用法是这样:

p.then((data) => {
    console.log('resolved',data);
}).catch((err) => {
    console.log('rejected',err);
});

效果和写在then的第二个参数里面一样。不过它还有另外一个作用:在执行resolve的回调(也就是上面then中的第一个参数)时,如果抛出异常了(代码出错了),那么并不会报错卡死js,而是会进到这个catch方法中。请看下面的代码: 

p.then((data) => {
    console.log('resolved',data);
    console.log(somedata); //此处的somedata未定义
})
.catch((err) => {
    console.log('rejected',err);
});

在resolve的回调中,我们console.log(somedata);而somedata这个变量是没有被定义的。如果我们不用Promise,代码运行到这里就直接在控制台报错了,不往下运行了。但是在这里,会得到这样的结果:

 也就是说进到catch方法里面去了,而且把错误原因传到了reason参数中。即便是有错误的代码也不会报错了,这与我们的try/catch语句有相同的功能

all的用法:谁跑的慢,以谁为准执行回调。all接收一个数组参数,里面的值最终都算返回Promise对象

Promise的all方法提供了并行执行异步操作的能力,并且在所有异步操作执行完后才执行回调。看下面的例子:

let Promise1 = new Promise(function(resolve, reject){})
let Promise2 = new Promise(function(resolve, reject){})
let Promise3 = new Promise(function(resolve, reject){})

let p = Promise.all([Promise1, Promise2, Promise3])

p.then(funciton(){
  // 三个都成功则成功  
}, function(){
  // 只要有失败,则失败 
})

有了all,你就可以并行执行多个异步操作,并且在一个回调中处理所有的返回数据,是不是很酷?有一个场景是很适合用这个的,一些游戏类的素材比较多的应用,打开网页时,预先加载需要用到的各种资源如图片、flash以及各种静态文件。所有的都加载完后,我们再进行页面的初始化。

race的用法:谁跑的快,以谁为准执行回调

race的使用场景:比如我们可以用race给某个异步请求设置超时时间,并且在超时后执行相应的操作,代码如下:

 //请求某个图片资源
    function requestImg(){
        var p = new Promise((resolve, reject) => {
            var img = new Image();
            img.onload = function(){
                resolve(img);
            }
            img.src = '图片的路径';
        });
        return p;
    }
    //延时函数,用于给请求计时
    function timeout(){
        var p = new Promise((resolve, reject) => {
            setTimeout(() => {
                reject('图片请求超时');
            }, 5000);
        });
        return p;
    }
    Promise.race([requestImg(), timeout()]).then((data) =>{
        console.log(data);
    }).catch((err) => {
        console.log(err);
    });

requestImg函数会异步请求一张图片,我把地址写为"图片的路径",所以肯定是无法成功请求到的。timeout函数是一个延时5秒的异步操作。我们把这两个返回Promise对象的函数放进race,于是他俩就会赛跑,如果5秒之内图片请求成功了,那么遍进入then方法,执行正常的流程。如果5秒钟图片还未成功返回,那么timeout就跑赢了,则进入catch,报出“图片请求超时”的信息。运行结果如下:

1.Promise 有几种状态?
3种。
 pending(等待态)

 fulfiled(成功态)

 rejected(失败态)


2.Promise得状态是否可变
不可变


3.Promise如何解决地狱回调?
地狱回调:发送多个异步请求时,每个请求之间相互都有关联,会出现第一个请求成功后再做下一个请求的情况。我们往往会用嵌套的方式来解决这种情况,这就形成了回调地狱。
then里面可以return Promise,来防止地狱回调


4.Promise有哪些方法?他们的应用场景是什么?(all/race)
Promise.all()接收一个对象数组为参数,处理并进行异步操作,如果成功就返回一个数组,失败就返回数据,一旦失败就不会继续往下走
Promise.race()成功返回一个数组,就返回那个成功的数组,不管结果本身是成功还是失败


5.如何让Promise顺序执行(async/await)
async用于函数声明,表示声明的函数为异步函数,这个函数返回一个Promise对象(resolve)
await表示在这里等待promise返回结果
async function getData(){
         await promise1.then(v => console.log(v))
}

原文链接:https://blog.csdn.net/weixin_42451032/article/details/115647237 


原文链接:https://juejin.cn/post/6844903607968481287

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/827709.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

DataX 异构数据贴源同步产品 - 技术分享篇(一)

DataX 是阿里开源的一个异构数据源离线同步工具&#xff0c;致力于实现包括关系型数据库(MySQL、Oracle等)、HDFS、Hive、ODPS、HBase、FTP等各种异构数据源之间稳定高效的数据同步功能。 DataX设计理念 DataX本身作为数据同步框架&#xff0c;将不同数据源的同步抽象为从源头…

springboot自定义错误消息

为了提供自定义错误消息提示&#xff0c;springboot在resources目录下&#xff0c;有一个文件ValidationMessages.properties 用于存储 验证错误的消息提示&#xff1a; 比如&#xff1a; 这样一个ValidationMessage.properties username.notempty用户名不能为空 username.len…

【RTT驱动框架分析04】-I2C驱动框架分析

IIC RT-Thread IIC 应用编程 2.驱动分析 IIC总线设备继承自io设备驱动框架&#xff0c;RTT对IIC就只有2层的封装 IIC设备总线&#xff0c;在RTT内部有软件IIC和硬件IIC 设备驱动注册 rt_err_t rt_i2c_bus_device_register(struct rt_i2c_bus_device *bus,const char …

第六章:SpringMVC上

第六章&#xff1a;SpringMVC上 6.1&#xff1a;SpringMVC简介 什么是MVC MVC是一种软件架构的思想&#xff0c;将软件按照模型、视图、控制器来划分。 M&#xff1a;Model&#xff0c;模型层&#xff0c;指工程中的JavaBean&#xff0c;作用是处理数据。 一类称为实体类Bean&…

Hololens2二维码识别

配置 目前大部分Hololens进行二维码识别的开发都是基于ZXing的包完成&#xff0c;首先需要完成zxing.unity.dll&#xff0c;很多地方应该都能下载&#xff0c;也可以直接上github上下载&#xff08;下载点这里&#xff09;。 下载时注意一下版本就好&#xff0c;过老的zxing兼…

shell脚本中set -e的作用

set -e作用描述&#xff1a;shell中脚本运行中可能出现命令执行失败的情况&#xff0c;如果执行失败对后续有影响那么就应该退出脚本&#xff0c;不继续往下执行。set -e 命令就可以避免操作失败还继续往下执行的问题。 #!/bin/shset -eecho "make axp ..."VERSION$…

JVM-运行时数据区

目录 什么是运行时数据区&#xff1f; 方法区 堆 程序计数器 虚拟机栈 局部变量表 操作数栈 动态连接 运行时常量池 方法返回地址 附加信息 本地方法栈 总结&#xff1a; 什么是运行时数据区&#xff1f; Java虚拟机在执行Java程序时&#xff0c;将它管…

BI报表工具有哪些作用?奥威BI全面剖析数据

BI报表工具有哪些作用&#xff1f;主要的作用是通过整合多业务来源数据&#xff0c;全面分析挖掘数据&#xff0c;来帮助企业实现数据化运营、支持智能决策、实现数据资产沉淀和增值、进行数据挖掘和预测分析、提高数据可读性和数据可视化程度等&#xff0c;从而提高企业的竞争…

目标用户特征分析常见4大方法

用户特征分析直接影响需求分析、用户体验设计等软件开发的关键环节&#xff0c;如果不对用户特征进行科学分析&#xff0c;不能获得用户真实意图&#xff0c;这直接影响需求分析质量&#xff0c;对整个项目影响较大。 因此我们需要用科学的方法对目标用户进行特征分析。而常见的…

腾讯云-宝塔添加MySQL数据库

1. 数据库菜单 2. 添加数据库 3. 数据库添加成功 4. 上传数据库文件 5. 导入数据库文件 6. 开启数据库权限 7. 添加安全组 (宝塔/腾讯云) 8. Navicat 连接成功

深入了解PostgreSQL:高级查询和性能优化技巧

在当今数据驱动的世界中&#xff0c;数据库的性能和查询优化变得尤为重要。 POSTGRESQL作为一种开源的关系型数据库管理系统&#xff0c;在处理大规模数据和复杂查询时表现出色。 但随着数据量和查询复杂性的增加&#xff0c;性能问题可能会显现出来。 本文将深入探讨POSTGR…

机器学习深入浅出

机器学习是一种人工智能的分支&#xff0c;它使用算法和数学模型来让计算机自主学习数据并做出预测和决策。这种技术正在被广泛应用于各种领域&#xff0c;包括自然语言处理、计算机视觉、语音识别、医学诊断和金融预测等。在本篇博客中&#xff0c;我们将介绍机器学习的基本概…

python的decimal或者叫Decimal,BigDecimal

前言 在python中进行小数计算时&#xff0c;很容易发生精度错误问题&#xff01;&#xff01;&#xff01;&#xff01;一定要注意&#xff01;&#xff01;&#xff01;或者说&#xff0c;只要进行小数的运算都要用decimal。如&#xff1a;银企对账&#xff1b;工程计算等等在…

(十一)大数据实战——hadoop高可用之HDFS手动模式高可用

前言 本节内容我们介绍一下hadoop在手动模式下如何实现HDFS的高可用&#xff0c;HDFS的高可用功能是通过配置多个 NameNodes(Active/Standby)实现在集群中对 NameNode 的热备来解决上述问题。如果出现故障&#xff0c;如机器崩溃或机器需要升级维护&#xff0c;这时可通过此种…

Amazon Aurora Serverless v2 正式发布:针对要求苛刻的工作负载的即时扩展

我们非常兴奋地宣布&#xff0c;Amazon Aurora Serverless v2 现已面向 Aurora PostgreSQL 和 MySQL 正式发布。Aurora Serverless 是一种面向 Amazon Aurora 的按需自动扩展配置&#xff0c;可让您的数据库根据应用程序的需求扩展或缩减容量。 亚马逊云科技开发者社区为开发者…

4 Promethues监控主机和容器

目录 目录 1. 监控节点 1.1 安装Node exporter 解压包 拷贝至目标目录 查看版本 1.2 配置Node exporter 1.3 配置textfile收集器 1.4 启动systemd收集器 1.5 基于Docker节点启动node_exporter 1.6 抓取Node Exporter 1.7 过滤收集器 2. 监控Docker容器 2.1 运行cAdviso…

ansible控制主机和受控主机之间免密及提权案例

目录 案例描述 环境准备 案例一--免密远程控制主机 效果展示&#xff1a; 解决方案 1.添加主机 2.通过ssh-key生成密钥对 3.生成ssh-copy-id 4.验证 案例二-----免密普通用户提权 效果展示 解决方案 1.使用普通用户&#xff0c;与案例一 一样&#xff0c;进行发送密钥…

不懂路由协议分类?这五个常用路由协议一定要掌握

摘要&#xff1a; 路由协议在计算机网络中起着非常重要的作用&#xff0c;用于选择数据包传输路径&#xff0c;能够帮助网络管理员有效地管理网络流量。路由协议有很多种&#xff0c;例如RIP、EIGRP、IS-IS等&#xff0c;那么路由协议如何分类&#xff1f;分享给大家一些常用的…

kubernetes之Ingress

一、背景 Ingress是k8s中实现7层负载的实现方式&#xff0c;是公开集群外部流量到集群内服务的HTTP和HTTPS路由 二、Ingress基础 通常Ingress实现由Ingress 控制器和Ingress组成&#xff0c;Ingress控制器负责具体实现反向代理及负载均衡&#xff0c;Ingress负责定义匹配规则和…

Pytorch(四)

目录 一、RNN(递归神经网络) 二、GAN(对抗生成网络) 三、OCR 四、注意力机制 一、RNN(递归神经网络) 主要应用于NLP(自然语言处理) 二、GAN(对抗生成网络) 原理:存在一个生成器与判别器&#xff0c;随着双方矛盾升级&#xff0c;从而双方性能不断增强。 GAN网络组成:生成网…