有 N 种物品和一个容量是 V 的背包,每种物品都有无限件可用。
第 ii 种物品的体积是 vi,价值是 wi。
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。
输入格式
第一行两个整数,N,V,用空格隔开,分别表示物品种数和背包容积。
接下来有 N 行,每行两个整数 vi,wi,用空格隔开,分别表示第 i 种物品的体积和价值。
输出格式
输出一个整数,表示最大价值。
数据范围
0<N,V≤1000
0<vi,wi≤1000
输入样例
4 5
1 2
2 4
3 4
4 5
输出样例:
10
朴素写法:会超时
#include<iostream>
#include<algorithm>
using namespace std;
const int N = 1010;
int n,m;
int v[N],w[N];
int f[N][N];
int main()
{
cin>>n>>m;
for(int i=1;i<=n;i++) cin>>v[i]>>w[i];
for(int i=1;i<=n;i++)
for(int j=0;j<=m;j++)
for(int k=0;k*v[i]<=j;k++)
f[i][j] = max(f[i][j],f[i-1][j-k*v[i]]+k*w[i]);
cout<<f[n][m]<<endl;
}
按分多少个物品进行划分:
进行二维优化:
#include<iostream>
#include<algorithm>
using namespace std;
const int N = 1010;
int n,m;
int v[N],w[N];
int f[N][N];
int main()
{
cin>>n>>m;
for(int i=1;i<=n;i++) cin>>v[i]>>w[i];
for(int i=1;i<=n;i++){
for(int j=0;j<=m;j++){
f[i][j] = f[i-1][j];
if(j>=v[i]) f[i][j] = max(f[i][j],f[i][j-v[i]]+w[i]);
}
}
/*for(int i=0;i<=n;i++){
for(int j=0;j<=m;j++){
cout<<f[i][j]<<" ";
}
cout<<endl;
}*/
cout<<f[n][m]<<endl;
}
进行一维优化:
#include<iostream>
#include<algorithm>
using namespace std;
const int N = 1010;
int n,m;
int v[N],w[N];
int f[N];
int main()
{
cin>>n>>m;
for(int i=1;i<=n;i++) cin>>v[i]>>w[i];
for(int i=1;i<=n;i++){
for(int j=v[i];j<=m;j++){
//与01背包不同的是,j循环必须从小到大,01背包从大到小是避免覆盖,而这完全背包从小到大是为了必须覆盖
//由图可知,我们需要实现的是累加的过程
f[j] = max(f[j],f[j-v[i]]+w[i]);
}
}
/*for(int i=0;i<=n;i++){
for(int j=0;j<=m;j++){
cout<<f[i][j]<<" ";
}
cout<<endl;
}*/
cout<<f[m]<<endl;
}