【Redis】内存数据库Redis进阶(Redis主从集群)

news2024/9/21 2:39:22

目录

    • 分布式缓存 Redis 四大问题
    • 搭建Redis主从集群
    • 主从数据同步原理
      • 全量同步
        • master 如何得知 salve 是第一次来连接(Replication Id与offset)
      • 增量同步
        • master怎么知道slave与自己的数据差异在哪里(repl_backlog原理)
      • 主从同步优化
      • 全量同步和增量同步总结

分布式缓存 Redis 四大问题

基于 Redis 集群解决单机 Redis 存在的四大问题:
在这里插入图片描述

搭建Redis主从集群

搭建的主从集群结构图:包含三个节点,一个主节点,两个从节点
在这里插入图片描述

IPPORT角色
192.168.150.1017001master
192.168.150.1017002slave
192.168.150.1017003slave

创建目录

# 进入/tmp目录
cd /tmp
# 创建三个文件夹,名字分别叫7001、7002、7003
mkdir 7001 7002 7003
ll
# 7001、7002、7003、redis-6.2.4

恢复原始配置

修改redis-6.2.4/redis.conf文件,将其中的持久化模式改为默认的 RDB 模式,AOF 保持关闭状态。

# 开启RDB
# save ""
save 3600 1
save 300 100
save 60 10000

# 关闭AOF
appendonly no

拷贝配置文件到每个实例目录,redis-6.2.4/redis.conf文件拷贝到三个目录中:

# 方式一:逐个拷贝
cp redis-6.2.4/redis.conf 7001
cp redis-6.2.4/redis.conf 7002
cp redis-6.2.4/redis.conf 7003

# 方式二:管道组合命令,一键拷贝
echo 7001 7002 7003 | xargs -t -n 1 cp redis-6.2.4/redis.conf

修改每个实例的端口、工作目录。修改每个文件夹内的配置文件,将端口分别修改为7001、7002、7003,将 RDB 文件保存位置都修改为自己所在目录:

sed -i -e 's/6379/7001/g' -e 's/dir .\//dir \/tmp\/7001\//g' 7001/redis.conf
sed -i -e 's/6379/7002/g' -e 's/dir .\//dir \/tmp\/7002\//g' 7002/redis.conf
sed -i -e 's/6379/7003/g' -e 's/dir .\//dir \/tmp\/7003\//g' 7003/redis.conf

修改每个实例的声明 IP。虚拟机本身有多个 IP,为了避免将来混乱,需要在 redis.conf 文件中指定每一个实例的绑定 IP 信息,格式如下:

# redis实例的声明 IP
replica-announce-ip 192.168.150.101

每个目录都要改,一键完成修改:

# 逐一执行
sed -i '1a replica-announce-ip 192.168.150.101' 7001/redis.conf
sed -i '1a replica-announce-ip 192.168.150.101' 7002/redis.conf
sed -i '1a replica-announce-ip 192.168.150.101' 7003/redis.conf

# 或者一键修改
printf '%s\n' 7001 7002 7003 | xargs -I{} -t sed -i '1a replica-announce-ip 192.168.150.101' {}/redis.conf

为了方便查看日志,打开3个 SSH 窗口,分别启动3个 Redis 实例,启动命令:

# 第1个
redis-server 7001/redis.conf
# 第2个
redis-server 7002/redis.conf
# 第3个
redis-server 7003/redis.conf

一键停止命令:

printf '%s\n' 7001 7002 7003 | xargs -I{} -t redis-cli -p {} shutdown

现在三个实例还没有任何关系,要配置主从可以使用replicaof 或者slaveof(5.0以前)命令。

有临时和永久两种模式:

  • 修改配置文件(永久生效)

    • redis.conf 中添加一行配置:slaveof <masterip> <masterport>
  • 使用 redis-cli 客户端连接到 Redis 服务,执行 slaveof 命令(重启后失效):

    slaveof <masterip> <masterport>
    

:在5.0以后新增命令 replicaof,与 salveof 效果一致。

使用方式二,使用 redis-cli 客户端连接到 Redis 服务,执行 slaveof 命令(重启后失效)
通过redis-cli命令连接7002,执行下面命令:

# 连接 7002
redis-cli -p 7002
# 执行slaveof
slaveof 192.168.150.101 7001

通过redis-cli命令连接7003,执行下面命令:

# 连接 7003
redis-cli -p 7003
# 执行slaveof
slaveof 192.168.150.101 7001

然后连接 7001节点,查看集群状态:

# 连接 7001
redis-cli -p 7001
# 查看状态
info replication

在这里插入图片描述
执行下列操作以测试集群:

  • 利用 redis-cli 连接7001,执行set num 123

  • 利用 redis-cli 连接7002,执行get num,再执行set num 666

  • 利用 redis-cli 连接7003,执行get num,再执行set num 888

可以发现,只有在 7001 这个 master 节点上可以执行写操作,7002 和 7003 这两个 slave 节点只能执行读操作

主从数据同步原理

全量同步

  主从第一次建立连接时,会执行全量同步,将 master 节点的所有数据都拷贝给 slave 节点,流程如下图。
在这里插入图片描述

master 如何得知 salve 是第一次来连接(Replication Id与offset)

有几个概念,可以作为判断依据:

  • Replication Id:简称 replid,是数据集的标记,id 一致则说明是同一数据集。每一个 master 都有唯一的 replid,slave 则会继承 master 节点的 replid。
  • offset:偏移量,随着记录在 repl_baklog 中的数据增多而逐渐增大。slave 完成同步时也会记录当前同步的 offset。如果 slave 的 offset 小于 master 的 offset,说明 slave 数据落后于 master,需要更新。

  slave 做数据同步,必须向 master 声明自己的 replication id 和 offset,master 才可以判断到底需要同步哪些数据。
  slave原本也是一个 master,有自己的 replid 和 offset,当第一次变成 slave,与 master 建立连接时,发送的 replid 和 offset 是自己的 replid 和 offset。master 判断发现 slave 发送来的 replid 与自己的不一致,说明这是一个全新的 slave,就知道要做全量同步了。
  master 会将自己的 replid 和 offset 都发送给这个 slave,slave 保存这些信息。以后 slave 的 replid 就与 master 一致了。因此,master判断一个节点是否是第一次同步的依据,就是看replid 是否一致。

在这里插入图片描述
完整流程描述:

  • slave 节点请求增量同步。
  • master 节点判断 replid,发现不一致,拒绝增量同步。
  • master 将完整内存数据生成 RDB,发送 RDB 到 slave。
  • slave 清空本地数据,加载 master 的 RDB。
  • master 将 RDB 期间的命令记录在 repl_baklog,并持续将 log 中的命令发送给 slave。
  • slave 执行接收到的命令,保持与 master 之间的同步。

增量同步

  全量同步需要先做 RDB,然后将 RDB 文件通过网络传输个 slave,成本太高了。因此除了第一次做全量同步,其它大多数时候 slave 与 master 都是做增量同步,就是只更新 slave 与 master 存在差异的部分数据。
在这里插入图片描述

master怎么知道slave与自己的数据差异在哪里(repl_backlog原理)

  全量同步时的 repl_baklog 文件。这个文件是一个固定大小的数组,只不过数组是环形,也就是说角标到达数组末尾后,会再次从0开始读写,这样数组头部的数据就会被覆盖。
  repl_baklog 中会记录 Redis 处理过的命令日志及 offset,包括 master 当前的 offset,和 slave 已经拷贝到的 offset。
  slave 与 master 的 offset 之间的差异,就是 salve 需要增量拷贝的数据。随着不断有数据写入,master 的 offset 逐渐变大,slave 也不断的拷贝,追赶 master 的 offset,直到数组被填满。
在这里插入图片描述
  此时,如果有新的数据写入,就会覆盖数组中的旧数据。不过,旧的数据只要是绿色的,说明是已经被同步到 slave 的数据,即便被覆盖了也没什么影响。因为未同步的仅仅是红色部分。
  但是,如果 slave 出现网络阻塞,导致 master 的 offset 远远超过了 slave 的 offset,如果master继续写入新数据,其 offset 就会覆盖旧的数据,直到将 slave 现在的 offset 也覆盖。棕色框中的红色部分,就是尚未同步,但是却已经被覆盖的数据。此时如果 slave 恢复,需要同步,却发现自己的 offset 都没有了,无法完成增量同步了。只能做全量同步。
在这里插入图片描述

:repl_baklog 文件大小有上限,写满后会覆盖最早的数据,如果 slave 断开时间过久,导致尚未备份的数据被覆盖,则无法基于 log 做增量同步,只能再次全量同步。

主从同步优化

  主从同步可以保证主从数据的一致性,非常重要。可以从以下几个方面来优化 Redis 主从集群:

  • 在 master 中配置 repl-diskless-sync yes 启用无磁盘复制,避免全量同步时的磁盘 IO。
  • Redis 单节点上的内存占用不要太大,减少 RDB 导致的过多磁盘 IO。
  • 适当提高 repl_baklog 的大小,发现 slave 宕机时尽快实现故障恢复,尽可能避免全量同步。
  • 限制一个 master 上的 slave 节点数量,如果实在是太多 slave,则可以采用主-从-从链式结构,减少 master 压力。

主-从-从 架构:
在这里插入图片描述

全量同步和增量同步总结

简述全量同步和增量同步区别?

  • 全量同步:master 将完整内存数据生成 RDB,发送 RDB 到 slave。后续命令则记录在 repl_baklog,逐个发送给 slave。
  • 增量同步:slave 提交自己的 offset 到master,master 获取 repl_baklog 中从 offset 之后的命令给 slave。

什么时候执行全量同步?

  • slave 节点第一次连接 master 节点时。
  • slave 节点断开时间太久,repl_baklog 中的 offset 已经被覆盖时。

什么时候执行增量同步?

  • slave 节点断开又恢复,并且在 repl_baklog 中能找到 offset 时。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/821757.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

根据中序遍历和后序遍历构建二叉树(递归和迭代两种方法实现)

给定两个整数数组 inorder 和 postorder &#xff0c;其中 inorder 是二叉树的中序遍历&#xff0c; postorder 是同一棵树的后序遍历&#xff0c;请你构造并返回这颗 二叉树 。 输入&#xff1a;inorder [9,3,15,20,7], postorder [9,15,7,20,3] 输出&#xff1a;[3,9,20,nu…

python使用selenium 打开谷歌浏览器闪退, 怎么解决

问题描述&#xff1a; 大家早好、午好、晚好吖 ❤ ~欢迎光临本文章 使用 Selenium 操作 Chrome 浏览器&#xff0c; Chrome 浏览器闪退 问题解决&#xff1a; 可能是以下几个方面出现了问题&#xff1a; 1. Chromedriver 版本与 Chrome 浏览器版本不匹配 你需要确保你正在…

cmake升级(ubuntu 18.04)——千万不要删除原来版本的cmake

重要提示 千万不要卸载删除ubuntu原有的cmake&#xff0c;否则之前经过原有cmake编译过的文件将也会被删除&#xff0c;比如 ros。 千万不要使用下面这句命令删除原有的 cmake &#xff01;&#xff01;&#xff01;&#xff01;&#xff01;&#xff01; 超级大坑&#xff0c;…

Linux第八章之进程概念

一、冯诺依曼体系结构 关于冯诺依曼&#xff0c;必须强调几点&#xff1a; 这里的存储器指的是内存不考虑缓存情况&#xff0c;这里的CPU能且只能对内存进行读写&#xff0c;不能访问外设(输入或输出设备)外设(输入或输出设备)要输入或者输出数据&#xff0c;也只能写入内存或…

基于jsp的塞北村镇旅游网站的设计与实现--【毕业论文】

文章目录 本系列校训毕设的技术铺垫文章主体层次摘要示例摘要的写法英文摘要&#xff1a; 选题目的和意义&#xff1a;与本课题相关的技术和方法综述&#xff1a;系统分析经济上的可行性技术上的可行性操作上的可行性开发结构分析 功能需求分析&#xff1a;数据流图 网站总体设…

已解决selenium.common.exceptions.InvalidCookieDomainException: Message: invalid cookie domain: Cookie ‘

已解决selenium.common.exceptions.InvalidCookieDomainException: Message: invalid cookie domain: Cookie ‘domain’ mismatch 文章目录 报错问题报错翻译报错原因解决方法千人全栈VIP答疑群联系博主帮忙解决报错 报错问题 粉丝群里面的一个小伙伴遇到问题跑来私信我&#…

特斯拉斥巨资收购?德国无线充电公司 Wiferion价值7600万美金

根据德国媒体Teslamag的报道&#xff0c;特斯拉据称已成功收购德国无线充电公司Wiferion&#xff0c;交易金额高达7600万美元&#xff08;相当于5.43亿元人民币&#xff09;。德国无线充电公司 Wiferion的网站页面底部显示计划于2023年实施&#xff0c;明确确认特斯拉为其母公司…

(树) 剑指 Offer 32 - II. 从上到下打印二叉树 II ——【Leetcode每日一题】

❓剑指 Offer 32 - II. 从上到下打印二叉树 II 难度&#xff1a;简单 从上到下按层打印二叉树&#xff0c;同一层的节点按从左到右的顺序打印&#xff0c;每一层打印到一行。 例如: 给定二叉树: [3,9,20,null,null,15,7], 3/ \9 20/ \15 7返回其层次遍历结果&#xff1a…

使用Three.js创建旋转的立方体

使用Three.js创建旋转的立方体 在本篇技术博客中&#xff0c;我们将介绍如何使用Three.js创建一个简单的场景&#xff0c;其中包含一个旋转的立方体。我们将学习如何设置场景、摄像机、立方体和渲染器&#xff0c;以及如何使用OrbitControls和gsap库来实现立方体的旋转动画和交…

ModuleNotFoundError: No module named ‘_sqlite3‘

前言 遇到报错信息如下&#xff1a; ModuleNotFoundError: No module named _sqlite3解决方式 参考解决方式&#xff1a; https://blog.csdn.net/jaket5219999/article/details/53512071 find / -name _sqlite*.socp /usr/lib64/python3.6/lib-dynload/_sqlite3.cpython-36…

BIO、NIO、IO多路复用模型详细介绍Java NIO 网络编程

文章目录 前言基本概念BIO过程NIO过程IO多路复用过程Java NIO编程Java NIO 核心概念Java NIO 示例 总结 前言 上文介绍了网络编程的基础知识&#xff0c;并基于 Java 编写了 BIO 的网络编程。我们知道 BIO 模型是存在巨大问题的&#xff0c;比如 C10K 问题&#xff0c;其本质就…

c++游戏制作指南(一):在冷峻的控制台上,种满缤纷

&#x1f37f;*★,*:.☆(&#xffe3;▽&#xffe3;)/$:*.★* &#x1f37f; &#x1f35f;欢迎来到静渊隐者的csdn博文&#xff0c;本文是c游戏制作指南的一部&#x1f35f; &#x1f355;更多文章请点击下方链接&#x1f355; &#x1f368; c游戏制作指南&#x1f3…

国产系统大致比较和分析(优麒麟、开放麒麟、深度deepin、统信UOS、银河麒麟、中标麒麟)

前言 目前国内比较出名的系统主要包括麒麟和统信&#xff0c;其中麒麟包括了优麒麟、开放麒麟、银河麒麟和中标麒麟。统信则包括深度deepin和统信UOS&#xff0c;而统信UOS的版本还包括了A版、E版和D版。这么多版本到底有什么区别&#xff1f;需要怎么选择呢&#xff1f; 1. 桌…

面试题:说说JavaScript中内存泄漏的几种情况?垃圾回收机制

内存泄漏 一、是什么&#xff1f;二、垃圾回收机制&#xff1f;2.1、标记清除法2.2、引用计数法 三、常见内存泄露情况 一、是什么&#xff1f; 由于疏忽或错误造成程序未能释放已经不再使用的内存&#xff1b;并非指内存在物理上的消失&#xff0c;而是应用程序分配某段内存后…

前端需要知道的计算机网络知识

1 Web 机制 无论通过有线方式 (通常是网线) 还是无线方式&#xff08;比如 wifi 或蓝牙)&#xff0c;通信需要进行连接&#xff0c;网络上的每台计算机需要链接到路由器&#xff08;router&#xff09;。 路由器确保从一台计算机上发出的一条信息可以到达正确的计算机。计算机…

每日一博 - Excel导入导出的那点事儿

文章目录 POIPOI不同版本的实现HSSFWorkbookXSSFWorkbookSXSSFWorkbook 不同API实现的优缺点HSSFWorkbook缺点优点 XSSFWorkbook优点缺点 SXSSFWorkbook优点&#xff1a;缺点&#xff1a; 经验百万级别的数据导入导出的方案 EasyExcel通用导入导出思路 POI 想到数据的导入导出…

超乎想象,北斗定位让港口作业更高效

北斗定位技术的出现&#xff0c;正在改变许多行业的生产方式&#xff0c;其中港口作业就是其中之一。港口是世界各地贸易的重要枢纽&#xff0c;其运作需要高度的精度和效率。北斗定位技术的引入&#xff0c;不仅让港口作业更加高效&#xff0c;而且还提高了安全性和可靠性。 首…

uniapp使用视频地址获取视频封面

很多时候我们都需要使用视频的第一帧当作视频的封面&#xff0c;今天我们从uni-app的安卓app这个环境来实现下这个需求。 uniapp 安卓APP端&#xff08;ios未测试&#xff09; 方法&#xff1a;使用renderjs实现对DOM元素的操作&#xff0c;创建video元素获取视频转第一帧&am…

二十三种设计模式第二十一篇--解释器模式

解释器模式&#xff08;Interpreter Pattern&#xff09;是一种行为设计模式&#xff0c;它用于定义一种语言的语法结构和解释器&#xff0c;使得可以解释并执行特定的语法规则。该模式可以将复杂的语言表达式分解为更小的语法单元&#xff0c;并定义其解释过程。 解释器模式的…

Pandas操作Excel

Pandas 是 Python 语言的一个扩展程序库&#xff0c;用于数据分析。 菜鸟教程&#xff1a;https://www.runoob.com/pandas/pandas-tutorial.html 读取Excel pd.read_excel(path,sheet_name,header) path&#xff1a;excel文件路径sheet_name&#xff1a;读取的sheet&#xff0…