文章目录
- 1. Hierarchical Recurrent Attention Networks for Structured Online Maps
- 2. DAGMapper: Learning to Map by Discovering Lane Topology
1. Hierarchical Recurrent Attention Networks for Structured Online Maps
- https://patrick-llgc.github.io/Learning-Deep-Learning/paper_notes/hran.html
预测结果:
- 两个点数不对称的折线
Loss
Polyline Loss
:首先有两个点集P和Q,然后分别取P、Q每个点距离另一个polyline所有pixel中最近pixel的距离作为loss。
2. DAGMapper: Learning to Map by Discovering Lane Topology
- https://github.com/patrick-llgc/Learning-Deep-Learning/blob/master/paper_notes/dagmapper.md
预测结果:
- 两个点数不对称的折线
Loss
symmetric Chamfer distance
(对称倒角距离):首先密集采样两个点集P和Q,然后分别取P、Q每个点距离另一个点集中的最短距离作为loss。cosine similarity loss
(余弦相似性):通过该loss来学习方向;L2 loss
:学习距离变化。
参考文章:
- https://github.com/patrick-llgc/Learning-Deep-Learning/blob/master/paper_notes/polymapper.md
- https://patrick-llgc.github.io/Learning-Deep-Learning/paper_notes/dagmapper.html