【机器学习】Cost Function for Logistic Regression

news2024/9/8 23:40:41

Cost Function for Logistic Regression

    • 1. 平方差能否用于逻辑回归?
    • 2. 逻辑损失函数loss
    • 3. 损失函数cost
    • 附录

导入所需的库

import numpy as np
%matplotlib widget
import matplotlib.pyplot as plt
from plt_logistic_loss import  plt_logistic_cost, plt_two_logistic_loss_curves, plt_simple_example
from plt_logistic_loss import soup_bowl, plt_logistic_squared_error
from lab_utils_common import  plot_data, sigmoid, dlc
plt.style.use('./deeplearning.mplstyle')

1. 平方差能否用于逻辑回归?

在前面的线性回归中,我们使用的是 squared error cost function,带有一个变量的squared error cost 为:
J ( w , b ) = 1 2 m ∑ i = 0 m − 1 ( f w , b ( x ( i ) ) − y ( i ) ) 2 (1) J(w,b) = \frac{1}{2m} \sum\limits_{i = 0}^{m-1} (f_{w,b}(x^{(i)}) - y^{(i)})^2 \tag{1} J(w,b)=2m1i=0m1(fw,b(x(i))y(i))2(1)
其中,
f w , b ( x ( i ) ) = w x ( i ) + b (2) f_{w,b}(x^{(i)}) = wx^{(i)} + b \tag{2} fw,b(x(i))=wx(i)+b(2)

squared error cost有一个很好的性质,就是对cost求导会得到最小值。

soup_bowl()

在这里插入图片描述

这个cost函数在线性回归中表现得很好,当然,它也适用于逻辑回归。然而, f w b ( x ) f_{wb}(x) fwb(x)现在有一个非线性的部分,即sigmoid函数: f w , b ( x ( i ) ) = s i g m o i d ( w x ( i ) + b ) f_{w,b}(x^{(i)}) = sigmoid(wx^{(i)} + b ) fw,b(x(i))=sigmoid(wx(i)+b)。接下来,我们尝试使用squared error cost在以前博客的样例中,此时包括sigmod。

训练数据:

x_train = np.array([0., 1, 2, 3, 4, 5],dtype=np.longdouble)
y_train = np.array([0,  0, 0, 1, 1, 1],dtype=np.longdouble)
plt_simple_example(x_train, y_train)

在这里插入图片描述
现在,用squared error cost 绘制cost的曲面图:
J ( w , b ) = 1 2 m ∑ i = 0 m − 1 ( f w , b ( x ( i ) ) − y ( i ) ) 2 J(w,b) = \frac{1}{2m} \sum\limits_{i = 0}^{m-1} (f_{w,b}(x^{(i)}) - y^{(i)})^2 J(w,b)=2m1i=0m1(fw,b(x(i))y(i))2
其中,
f w , b ( x ( i ) ) = s i g m o i d ( w x ( i ) + b ) f_{w,b}(x^{(i)}) = sigmoid(wx^{(i)} + b ) fw,b(x(i))=sigmoid(wx(i)+b)

plt.close('all')
plt_logistic_squared_error(x_train,y_train)
plt.show()

在这里插入图片描述
虽然这产生了一个非常有趣的曲面图,但上面的曲面并不像线性回归的“汤碗”那么光滑。逻辑回归需要一个更适合其非线性性质的cost函数。

2. 逻辑损失函数loss

逻辑回归使用更适合分类任务的Loss函数,其中目标是0或1而不是任何数字。
注意:Loss是单个示例与其目标值之差的度量,而Cost是训练集上损失的度量。

定义: l o s s ( f w , b ( x ( i ) ) , y ( i ) ) loss(f_{\mathbf{w},b}(\mathbf{x}^{(i)}), y^{(i)}) loss(fw,b(x(i)),y(i)) 是单个数据点的cost:
l o s s ( f w , b ( x ( i ) ) , y ( i ) ) = { − log ⁡ ( f w , b ( x ( i ) ) ) if  y ( i ) = 1 log ⁡ ( 1 − f w , b ( x ( i ) ) ) if  y ( i ) = 0 \begin{equation} loss(f_{\mathbf{w},b}(\mathbf{x}^{(i)}), y^{(i)}) = \begin{cases} - \log\left(f_{\mathbf{w},b}\left( \mathbf{x}^{(i)} \right) \right) & \text{if $y^{(i)}=1$}\\ \log \left( 1 - f_{\mathbf{w},b}\left( \mathbf{x}^{(i)} \right) \right) & \text{if $y^{(i)}=0$} \end{cases} \end{equation} loss(fw,b(x(i)),y(i))={log(fw,b(x(i)))log(1fw,b(x(i)))if y(i)=1if y(i)=0

f w , b ( x ( i ) ) f_{\mathbf{w},b}(\mathbf{x}^{(i)}) fw,b(x(i)) 是模型的预测值, y ( i ) y^{(i)} y(i) 是目标值.

f w , b ( x ( i ) ) = g ( w ⋅ x ( i ) + b ) f_{\mathbf{w},b}(\mathbf{x}^{(i)}) = g(\mathbf{w} \cdot\mathbf{x}^{(i)}+b) fw,b(x(i))=g(wx(i)+b) ,其中 g g g 是 sigmoid 函数.

这个损失函数的定义特点在于使用了两条不同的曲线。一个用于目标为0或( y = 0 y=0 y=0)的情况,另一个用于目标为1 ( y = 1 y=1 y=1)的情况。这些曲线结合起来为损失函数提供了帮助,即当预测与目标匹配时为零,当预测与目标不同时 l o s s loss loss 值迅速增加。

plt_two_logistic_loss_curves()

在这里插入图片描述
综合起来,曲线类似于平方差损失的二次曲线。注意,x轴是 f w , b f_{\mathbf{w},b} fw,b,是sigmoid的输出。sigmoid 输出严格在0到1之间。

上面的损失函数可以简写为:
l o s s ( f w , b ( x ( i ) ) , y ( i ) ) = ( − y ( i ) log ⁡ ( f w , b ( x ( i ) ) ) − ( 1 − y ( i ) ) log ⁡ ( 1 − f w , b ( x ( i ) ) ) loss(f_{\mathbf{w},b}(\mathbf{x}^{(i)}), y^{(i)}) = (-y^{(i)} \log\left(f_{\mathbf{w},b}\left( \mathbf{x}^{(i)} \right) \right) - \left( 1 - y^{(i)}\right) \log \left( 1 - f_{\mathbf{w},b}\left( \mathbf{x}^{(i)} \right) \right) loss(fw,b(x(i)),y(i))=(y(i)log(fw,b(x(i)))(1y(i))log(1fw,b(x(i)))

可以将方程分成两部分:
y ( i ) = 0 y^{(i)} = 0 y(i)=0 时,左边的项被消除:
l o s s ( f w , b ( x ( i ) ) , 0 ) = ( − ( 0 ) log ⁡ ( f w , b ( x ( i ) ) ) − ( 1 − 0 ) log ⁡ ( 1 − f w , b ( x ( i ) ) ) = − log ⁡ ( 1 − f w , b ( x ( i ) ) ) \begin{align} loss(f_{\mathbf{w},b}(\mathbf{x}^{(i)}), 0) &= (-(0) \log\left(f_{\mathbf{w},b}\left( \mathbf{x}^{(i)} \right) \right) - \left( 1 - 0\right) \log \left( 1 - f_{\mathbf{w},b}\left( \mathbf{x}^{(i)} \right) \right) \\ &= -\log \left( 1 - f_{\mathbf{w},b}\left( \mathbf{x}^{(i)} \right) \right) \end{align} loss(fw,b(x(i)),0)=((0)log(fw,b(x(i)))(10)log(1fw,b(x(i)))=log(1fw,b(x(i)))

y ( i ) = 1 y^{(i)} = 1 y(i)=1 时, 右边的项被消除:
l o s s ( f w , b ( x ( i ) ) , 1 ) = ( − ( 1 ) log ⁡ ( f w , b ( x ( i ) ) ) − ( 1 − 1 ) log ⁡ ( 1 − f w , b ( x ( i ) ) ) = − log ⁡ ( f w , b ( x ( i ) ) ) \begin{align} loss(f_{\mathbf{w},b}(\mathbf{x}^{(i)}), 1) &= (-(1) \log\left(f_{\mathbf{w},b}\left( \mathbf{x}^{(i)} \right) \right) - \left( 1 - 1\right) \log \left( 1 - f_{\mathbf{w},b}\left( \mathbf{x}^{(i)} \right) \right)\\ &= -\log\left(f_{\mathbf{w},b}\left( \mathbf{x}^{(i)} \right) \right) \end{align} loss(fw,b(x(i)),1)=((1)log(fw,b(x(i)))(11)log(1fw,b(x(i)))=log(fw,b(x(i)))

所以,我们可以通过这个新的逻辑损失函数得到一个包含所有样例的损失函数。

上面示例的损失与参数曲线为:

plt.close('all')
cst = plt_logistic_cost(x_train,y_train)

在这里插入图片描述
这条曲线非常适合梯度下降。它没有局部极小值或不连续点。需要注意的是,它不像平方差损失那样呈现“碗”状。绘制cost和log cost来说明,当cost较小时,曲线有一个斜率并继续下降。

3. 损失函数cost

导入数据集

X_train = np.array([[0.5, 1.5], [1,1], [1.5, 0.5], [3, 0.5], [2, 2], [1, 2.5]])  #(m,n)
y_train = np.array([0, 0, 0, 1, 1, 1])                                           #(m,)

训练数据绘图可视化:

fig,ax = plt.subplots(1,1,figsize=(4,4))
plot_data(X_train, y_train, ax)

# Set both axes to be from 0-4
ax.axis([0, 4, 0, 3.5])
ax.set_ylabel('$x_1$', fontsize=12)
ax.set_xlabel('$x_0$', fontsize=12)
plt.show()

在这里插入图片描述

前面介绍了一个样例的逻辑 loss 函数,这里我们根据 loss 计算包括所有样例的cost 。
对于逻辑回归,cost 函数表示为:
J ( w , b ) = 1 m ∑ i = 0 m − 1 [ l o s s ( f w , b ( x ( i ) ) , y ( i ) ) ] (1) J(\mathbf{w},b) = \frac{1}{m} \sum_{i=0}^{m-1} \left[ loss(f_{\mathbf{w},b}(\mathbf{x}^{(i)}), y^{(i)}) \right] \tag{1} J(w,b)=m1i=0m1[loss(fw,b(x(i)),y(i))](1)

其中,

  • l o s s ( f w , b ( x ( i ) ) , y ( i ) ) loss(f_{\mathbf{w},b}(\mathbf{x}^{(i)}), y^{(i)}) loss(fw,b(x(i)),y(i)) 是一个单独数据点的cost,即:
    l o s s ( f w , b ( x ( i ) ) , y ( i ) ) = − y ( i ) log ⁡ ( f w , b ( x ( i ) ) ) − ( 1 − y ( i ) ) log ⁡ ( 1 − f w , b ( x ( i ) ) ) (2) loss(f_{\mathbf{w},b}(\mathbf{x}^{(i)}), y^{(i)}) = -y^{(i)} \log\left(f_{\mathbf{w},b}\left( \mathbf{x}^{(i)} \right) \right) - \left( 1 - y^{(i)}\right) \log \left( 1 - f_{\mathbf{w},b}\left( \mathbf{x}^{(i)} \right) \right) \tag{2} loss(fw,b(x(i)),y(i))=y(i)log(fw,b(x(i)))(1y(i))log(1fw,b(x(i)))(2)

其中,m是数据集中训练样例的数量。
f w , b ( x ( i ) ) = g ( z ( i ) ) z ( i ) = w ⋅ x ( i ) + b g ( z ( i ) ) = 1 1 + e − z ( i ) \begin{align} f_{\mathbf{w},b}(\mathbf{x^{(i)}}) &= g(z^{(i)})\tag{3} \\ z^{(i)} &= \mathbf{w} \cdot \mathbf{x}^{(i)}+ b\tag{4} \\ g(z^{(i)}) &= \frac{1}{1+e^{-z^{(i)}}}\tag{5} \end{align} fw,b(x(i))z(i)g(z(i))=g(z(i))=wx(i)+b=1+ez(i)1(3)(4)(5)

其代码描述为:

compute_cost_logistic算法在所有的样例上循环,计算每个样例的损失并相加。

变量 X 和 y 不是标量,而是shape分别为( m , n m, n m,n) 和 ( m m m) 的矩阵。其中 n n n 是特征的数量, m m m 是训练样例的数量.

def compute_cost_logistic(X, y, w, b):
    """
    Computes cost

    Args:
      X (ndarray (m,n)): Data, m examples with n features
      y (ndarray (m,)) : target values
      w (ndarray (n,)) : model parameters  
      b (scalar)       : model parameter
      
    Returns:
      cost (scalar): cost
    """

    m = X.shape[0]
    cost = 0.0
    for i in range(m):
        z_i = np.dot(X[i],w) + b
        f_wb_i = sigmoid(z_i)
        cost +=  -y[i]*np.log(f_wb_i) - (1-y[i])*np.log(1-f_wb_i)
             
    cost = cost / m
    return cost

测试一下:

w_tmp = np.array([1,1])
b_tmp = -3
print(compute_cost_logistic(X_train, y_train, w_tmp, b_tmp))

输出为:0.3668667864055175

附录

lab_utils_common.py 源码:

"""
lab_utils_common
   contains common routines and variable definitions
   used by all the labs in this week.
   by contrast, specific, large plotting routines will be in separate files
   and are generally imported into the week where they are used.
   those files will import this file
"""
import copy
import math
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.patches import FancyArrowPatch
from ipywidgets import Output

np.set_printoptions(precision=2)

dlc = dict(dlblue = '#0096ff', dlorange = '#FF9300', dldarkred='#C00000', dlmagenta='#FF40FF', dlpurple='#7030A0')
dlblue = '#0096ff'; dlorange = '#FF9300'; dldarkred='#C00000'; dlmagenta='#FF40FF'; dlpurple='#7030A0'
dlcolors = [dlblue, dlorange, dldarkred, dlmagenta, dlpurple]
plt.style.use('./deeplearning.mplstyle')

def sigmoid(z):
    """
    Compute the sigmoid of z

    Parameters
    ----------
    z : array_like
        A scalar or numpy array of any size.

    Returns
    -------
     g : array_like
         sigmoid(z)
    """
    z = np.clip( z, -500, 500 )           # protect against overflow
    g = 1.0/(1.0+np.exp(-z))

    return g

##########################################################
# Regression Routines
##########################################################

def predict_logistic(X, w, b):
    """ performs prediction """
    return sigmoid(X @ w + b)

def predict_linear(X, w, b):
    """ performs prediction """
    return X @ w + b

def compute_cost_logistic(X, y, w, b, lambda_=0, safe=False):
    """
    Computes cost using logistic loss, non-matrix version

    Args:
      X (ndarray): Shape (m,n)  matrix of examples with n features
      y (ndarray): Shape (m,)   target values
      w (ndarray): Shape (n,)   parameters for prediction
      b (scalar):               parameter  for prediction
      lambda_ : (scalar, float) Controls amount of regularization, 0 = no regularization
      safe : (boolean)          True-selects under/overflow safe algorithm
    Returns:
      cost (scalar): cost
    """

    m,n = X.shape
    cost = 0.0
    for i in range(m):
        z_i    = np.dot(X[i],w) + b                                             #(n,)(n,) or (n,) ()
        if safe:  #avoids overflows
            cost += -(y[i] * z_i ) + log_1pexp(z_i)
        else:
            f_wb_i = sigmoid(z_i)                                                   #(n,)
            cost  += -y[i] * np.log(f_wb_i) - (1 - y[i]) * np.log(1 - f_wb_i)       # scalar
    cost = cost/m

    reg_cost = 0
    if lambda_ != 0:
        for j in range(n):
            reg_cost += (w[j]**2)                                               # scalar
        reg_cost = (lambda_/(2*m))*reg_cost

    return cost + reg_cost


def log_1pexp(x, maximum=20):
    ''' approximate log(1+exp^x)
        https://stats.stackexchange.com/questions/475589/numerical-computation-of-cross-entropy-in-practice
    Args:
    x   : (ndarray Shape (n,1) or (n,)  input
    out : (ndarray Shape matches x      output ~= np.log(1+exp(x))
    '''

    out  = np.zeros_like(x,dtype=float)
    i    = x <= maximum
    ni   = np.logical_not(i)

    out[i]  = np.log(1 + np.exp(x[i]))
    out[ni] = x[ni]
    return out


def compute_cost_matrix(X, y, w, b, logistic=False, lambda_=0, safe=True):
    """
    Computes the cost using  using matrices
    Args:
      X : (ndarray, Shape (m,n))          matrix of examples
      y : (ndarray  Shape (m,) or (m,1))  target value of each example
      w : (ndarray  Shape (n,) or (n,1))  Values of parameter(s) of the model
      b : (scalar )                       Values of parameter of the model
      verbose : (Boolean) If true, print out intermediate value f_wb
    Returns:
      total_cost: (scalar)                cost
    """
    m = X.shape[0]
    y = y.reshape(-1,1)             # ensure 2D
    w = w.reshape(-1,1)             # ensure 2D
    if logistic:
        if safe:  #safe from overflow
            z = X @ w + b                                                           #(m,n)(n,1)=(m,1)
            cost = -(y * z) + log_1pexp(z)
            cost = np.sum(cost)/m                                                   # (scalar)
        else:
            f    = sigmoid(X @ w + b)                                               # (m,n)(n,1) = (m,1)
            cost = (1/m)*(np.dot(-y.T, np.log(f)) - np.dot((1-y).T, np.log(1-f)))   # (1,m)(m,1) = (1,1)
            cost = cost[0,0]                                                        # scalar
    else:
        f    = X @ w + b                                                        # (m,n)(n,1) = (m,1)
        cost = (1/(2*m)) * np.sum((f - y)**2)                                   # scalar

    reg_cost = (lambda_/(2*m)) * np.sum(w**2)                                   # scalar

    total_cost = cost + reg_cost                                                # scalar

    return total_cost                                                           # scalar

def compute_gradient_matrix(X, y, w, b, logistic=False, lambda_=0):
    """
    Computes the gradient using matrices

    Args:
      X : (ndarray, Shape (m,n))          matrix of examples
      y : (ndarray  Shape (m,) or (m,1))  target value of each example
      w : (ndarray  Shape (n,) or (n,1))  Values of parameters of the model
      b : (scalar )                       Values of parameter of the model
      logistic: (boolean)                 linear if false, logistic if true
      lambda_:  (float)                   applies regularization if non-zero
    Returns
      dj_dw: (array_like Shape (n,1))     The gradient of the cost w.r.t. the parameters w
      dj_db: (scalar)                     The gradient of the cost w.r.t. the parameter b
    """
    m = X.shape[0]
    y = y.reshape(-1,1)             # ensure 2D
    w = w.reshape(-1,1)             # ensure 2D

    f_wb  = sigmoid( X @ w + b ) if logistic else  X @ w + b      # (m,n)(n,1) = (m,1)
    err   = f_wb - y                                              # (m,1)
    dj_dw = (1/m) * (X.T @ err)                                   # (n,m)(m,1) = (n,1)
    dj_db = (1/m) * np.sum(err)                                   # scalar

    dj_dw += (lambda_/m) * w        # regularize                  # (n,1)

    return dj_db, dj_dw                                           # scalar, (n,1)

def gradient_descent(X, y, w_in, b_in, alpha, num_iters, logistic=False, lambda_=0, verbose=True):
    """
    Performs batch gradient descent to learn theta. Updates theta by taking
    num_iters gradient steps with learning rate alpha

    Args:
      X (ndarray):    Shape (m,n)         matrix of examples
      y (ndarray):    Shape (m,) or (m,1) target value of each example
      w_in (ndarray): Shape (n,) or (n,1) Initial values of parameters of the model
      b_in (scalar):                      Initial value of parameter of the model
      logistic: (boolean)                 linear if false, logistic if true
      lambda_:  (float)                   applies regularization if non-zero
      alpha (float):                      Learning rate
      num_iters (int):                    number of iterations to run gradient descent

    Returns:
      w (ndarray): Shape (n,) or (n,1)    Updated values of parameters; matches incoming shape
      b (scalar):                         Updated value of parameter
    """
    # An array to store cost J and w's at each iteration primarily for graphing later
    J_history = []
    w = copy.deepcopy(w_in)  #avoid modifying global w within function
    b = b_in
    w = w.reshape(-1,1)      #prep for matrix operations
    y = y.reshape(-1,1)

    for i in range(num_iters):

        # Calculate the gradient and update the parameters
        dj_db,dj_dw = compute_gradient_matrix(X, y, w, b, logistic, lambda_)

        # Update Parameters using w, b, alpha and gradient
        w = w - alpha * dj_dw
        b = b - alpha * dj_db

        # Save cost J at each iteration
        if i<100000:      # prevent resource exhaustion
            J_history.append( compute_cost_matrix(X, y, w, b, logistic, lambda_) )

        # Print cost every at intervals 10 times or as many iterations if < 10
        if i% math.ceil(num_iters / 10) == 0:
            if verbose: print(f"Iteration {i:4d}: Cost {J_history[-1]}   ")

    return w.reshape(w_in.shape), b, J_history  #return final w,b and J history for graphing

def zscore_normalize_features(X):
    """
    computes  X, zcore normalized by column

    Args:
      X (ndarray): Shape (m,n) input data, m examples, n features

    Returns:
      X_norm (ndarray): Shape (m,n)  input normalized by column
      mu (ndarray):     Shape (n,)   mean of each feature
      sigma (ndarray):  Shape (n,)   standard deviation of each feature
    """
    # find the mean of each column/feature
    mu     = np.mean(X, axis=0)                 # mu will have shape (n,)
    # find the standard deviation of each column/feature
    sigma  = np.std(X, axis=0)                  # sigma will have shape (n,)
    # element-wise, subtract mu for that column from each example, divide by std for that column
    X_norm = (X - mu) / sigma

    return X_norm, mu, sigma

#check our work
#from sklearn.preprocessing import scale
#scale(X_orig, axis=0, with_mean=True, with_std=True, copy=True)

######################################################
# Common Plotting Routines
######################################################


def plot_data(X, y, ax, pos_label="y=1", neg_label="y=0", s=80, loc='best' ):
    """ plots logistic data with two axis """
    # Find Indices of Positive and Negative Examples
    pos = y == 1
    neg = y == 0
    pos = pos.reshape(-1,)  #work with 1D or 1D y vectors
    neg = neg.reshape(-1,)

    # Plot examples
    ax.scatter(X[pos, 0], X[pos, 1], marker='x', s=s, c = 'red', label=pos_label)
    ax.scatter(X[neg, 0], X[neg, 1], marker='o', s=s, label=neg_label, facecolors='none', edgecolors=dlblue, lw=3)
    ax.legend(loc=loc)

    ax.figure.canvas.toolbar_visible = False
    ax.figure.canvas.header_visible = False
    ax.figure.canvas.footer_visible = False

def plt_tumor_data(x, y, ax):
    """ plots tumor data on one axis """
    pos = y == 1
    neg = y == 0

    ax.scatter(x[pos], y[pos], marker='x', s=80, c = 'red', label="malignant")
    ax.scatter(x[neg], y[neg], marker='o', s=100, label="benign", facecolors='none', edgecolors=dlblue,lw=3)
    ax.set_ylim(-0.175,1.1)
    ax.set_ylabel('y')
    ax.set_xlabel('Tumor Size')
    ax.set_title("Logistic Regression on Categorical Data")

    ax.figure.canvas.toolbar_visible = False
    ax.figure.canvas.header_visible = False
    ax.figure.canvas.footer_visible = False

# Draws a threshold at 0.5
def draw_vthresh(ax,x):
    """ draws a threshold """
    ylim = ax.get_ylim()
    xlim = ax.get_xlim()
    ax.fill_between([xlim[0], x], [ylim[1], ylim[1]], alpha=0.2, color=dlblue)
    ax.fill_between([x, xlim[1]], [ylim[1], ylim[1]], alpha=0.2, color=dldarkred)
    ax.annotate("z >= 0", xy= [x,0.5], xycoords='data',
                xytext=[30,5],textcoords='offset points')
    d = FancyArrowPatch(
        posA=(x, 0.5), posB=(x+3, 0.5), color=dldarkred,
        arrowstyle='simple, head_width=5, head_length=10, tail_width=0.0',
    )
    ax.add_artist(d)
    ax.annotate("z < 0", xy= [x,0.5], xycoords='data',
                 xytext=[-50,5],textcoords='offset points', ha='left')
    f = FancyArrowPatch(
        posA=(x, 0.5), posB=(x-3, 0.5), color=dlblue,
        arrowstyle='simple, head_width=5, head_length=10, tail_width=0.0',
    )
    ax.add_artist(f)

plt_logistic_loss.py 源码:

"""----------------------------------------------------------------
 logistic_loss plotting routines and support
"""

from matplotlib import cm
from lab_utils_common import sigmoid, dlblue, dlorange, np, plt, compute_cost_matrix

def compute_cost_logistic_sq_err(X, y, w, b):
    """
    compute sq error cost on logicist data (for negative example only, not used in practice)
    Args:
      X (ndarray): Shape (m,n) matrix of examples with multiple features
      w (ndarray): Shape (n)   parameters for prediction
      b (scalar):              parameter  for prediction
    Returns:
      cost (scalar): cost
    """
    m = X.shape[0]
    cost = 0.0
    for i in range(m):
        z_i = np.dot(X[i],w) + b
        f_wb_i = sigmoid(z_i)                 #add sigmoid to normal sq error cost for linear regression
        cost = cost + (f_wb_i - y[i])**2
    cost = cost / (2 * m)
    return np.squeeze(cost)

def plt_logistic_squared_error(X,y):
    """ plots logistic squared error for demonstration """
    wx, by = np.meshgrid(np.linspace(-6,12,50),
                         np.linspace(10, -20, 40))
    points = np.c_[wx.ravel(), by.ravel()]
    cost = np.zeros(points.shape[0])

    for i in range(points.shape[0]):
        w,b = points[i]
        cost[i] = compute_cost_logistic_sq_err(X.reshape(-1,1), y, w, b)
    cost = cost.reshape(wx.shape)

    fig = plt.figure()
    fig.canvas.toolbar_visible = False
    fig.canvas.header_visible = False
    fig.canvas.footer_visible = False
    ax = fig.add_subplot(1, 1, 1, projection='3d')
    ax.plot_surface(wx, by, cost, alpha=0.6,cmap=cm.jet,)

    ax.set_xlabel('w', fontsize=16)
    ax.set_ylabel('b', fontsize=16)
    ax.set_zlabel("Cost", rotation=90, fontsize=16)
    ax.set_title('"Logistic" Squared Error Cost vs (w, b)')
    ax.xaxis.set_pane_color((1.0, 1.0, 1.0, 0.0))
    ax.yaxis.set_pane_color((1.0, 1.0, 1.0, 0.0))
    ax.zaxis.set_pane_color((1.0, 1.0, 1.0, 0.0))


def plt_logistic_cost(X,y):
    """ plots logistic cost """
    wx, by = np.meshgrid(np.linspace(-6,12,50),
                         np.linspace(0, -20, 40))
    points = np.c_[wx.ravel(), by.ravel()]
    cost = np.zeros(points.shape[0],dtype=np.longdouble)

    for i in range(points.shape[0]):
        w,b = points[i]
        cost[i] = compute_cost_matrix(X.reshape(-1,1), y, w, b, logistic=True, safe=True)
    cost = cost.reshape(wx.shape)

    fig = plt.figure(figsize=(9,5))
    fig.canvas.toolbar_visible = False
    fig.canvas.header_visible = False
    fig.canvas.footer_visible = False
    ax = fig.add_subplot(1, 2, 1, projection='3d')
    ax.plot_surface(wx, by, cost, alpha=0.6,cmap=cm.jet,)

    ax.set_xlabel('w', fontsize=16)
    ax.set_ylabel('b', fontsize=16)
    ax.set_zlabel("Cost", rotation=90, fontsize=16)
    ax.set_title('Logistic Cost vs (w, b)')
    ax.xaxis.set_pane_color((1.0, 1.0, 1.0, 0.0))
    ax.yaxis.set_pane_color((1.0, 1.0, 1.0, 0.0))
    ax.zaxis.set_pane_color((1.0, 1.0, 1.0, 0.0))

    ax = fig.add_subplot(1, 2, 2, projection='3d')

    ax.plot_surface(wx, by, np.log(cost), alpha=0.6,cmap=cm.jet,)

    ax.set_xlabel('w', fontsize=16)
    ax.set_ylabel('b', fontsize=16)
    ax.set_zlabel('\nlog(Cost)', fontsize=16)
    ax.set_title('log(Logistic Cost) vs (w, b)')
    ax.xaxis.set_pane_color((1.0, 1.0, 1.0, 0.0))
    ax.yaxis.set_pane_color((1.0, 1.0, 1.0, 0.0))
    ax.zaxis.set_pane_color((1.0, 1.0, 1.0, 0.0))

    plt.show()
    return cost


def soup_bowl():
    """ creates 3D quadratic error surface """
    #Create figure and plot with a 3D projection
    fig = plt.figure(figsize=(4,4))
    fig.canvas.toolbar_visible = False
    fig.canvas.header_visible = False
    fig.canvas.footer_visible = False

    #Plot configuration
    ax = fig.add_subplot(111, projection='3d')
    ax.xaxis.set_pane_color((1.0, 1.0, 1.0, 0.0))
    ax.yaxis.set_pane_color((1.0, 1.0, 1.0, 0.0))
    ax.zaxis.set_pane_color((1.0, 1.0, 1.0, 0.0))
    ax.zaxis.set_rotate_label(False)
    ax.view_init(15, -120)

    #Useful linearspaces to give values to the parameters w and b
    w = np.linspace(-20, 20, 100)
    b = np.linspace(-20, 20, 100)

    #Get the z value for a bowl-shaped cost function
    z=np.zeros((len(w), len(b)))
    j=0
    for x in w:
        i=0
        for y in b:
            z[i,j] = x**2 + y**2
            i+=1
        j+=1

    #Meshgrid used for plotting 3D functions
    W, B = np.meshgrid(w, b)

    #Create the 3D surface plot of the bowl-shaped cost function
    ax.plot_surface(W, B, z, cmap = "Spectral_r", alpha=0.7, antialiased=False)
    ax.plot_wireframe(W, B, z, color='k', alpha=0.1)
    ax.set_xlabel("$w$")
    ax.set_ylabel("$b$")
    ax.set_zlabel("Cost", rotation=90)
    ax.set_title("Squared Error Cost used in Linear Regression")

    plt.show()


def plt_simple_example(x, y):
    """ plots tumor data """
    pos = y == 1
    neg = y == 0

    fig,ax = plt.subplots(1,1,figsize=(5,3))
    fig.canvas.toolbar_visible = False
    fig.canvas.header_visible = False
    fig.canvas.footer_visible = False

    ax.scatter(x[pos], y[pos], marker='x', s=80, c = 'red', label="malignant")
    ax.scatter(x[neg], y[neg], marker='o', s=100, label="benign", facecolors='none', edgecolors=dlblue,lw=3)
    ax.set_ylim(-0.075,1.1)
    ax.set_ylabel('y')
    ax.set_xlabel('Tumor Size')
    ax.legend(loc='lower right')
    ax.set_title("Example of Logistic Regression on Categorical Data")


def plt_two_logistic_loss_curves():
    """ plots the logistic loss """
    fig,ax = plt.subplots(1,2,figsize=(6,3),sharey=True)
    fig.canvas.toolbar_visible = False
    fig.canvas.header_visible = False
    fig.canvas.footer_visible = False
    x = np.linspace(0.01,1-0.01,20)
    ax[0].plot(x,-np.log(x))
    ax[0].set_title("y = 1")
    ax[0].set_ylabel("loss")
    ax[0].set_xlabel(r"$f_{w,b}(x)$")
    ax[1].plot(x,-np.log(1-x))
    ax[1].set_title("y = 0")
    ax[1].set_xlabel(r"$f_{w,b}(x)$")
    ax[0].annotate("prediction \nmatches \ntarget ", xy= [1,0], xycoords='data',
                 xytext=[-10,30],textcoords='offset points', ha="right", va="center",
                   arrowprops={'arrowstyle': '->', 'color': dlorange, 'lw': 3},)
    ax[0].annotate("loss increases as prediction\n differs from target", xy= [0.1,-np.log(0.1)], xycoords='data',
                 xytext=[10,30],textcoords='offset points', ha="left", va="center",
                   arrowprops={'arrowstyle': '->', 'color': dlorange, 'lw': 3},)
    ax[1].annotate("prediction \nmatches \ntarget ", xy= [0,0], xycoords='data',
                 xytext=[10,30],textcoords='offset points', ha="left", va="center",
                   arrowprops={'arrowstyle': '->', 'color': dlorange, 'lw': 3},)
    ax[1].annotate("loss increases as prediction\n differs from target", xy= [0.9,-np.log(1-0.9)], xycoords='data',
                 xytext=[-10,30],textcoords='offset points', ha="right", va="center",
                   arrowprops={'arrowstyle': '->', 'color': dlorange, 'lw': 3},)
    plt.suptitle("Loss Curves for Two Categorical Target Values", fontsize=12)
    plt.tight_layout()
    plt.show()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/816235.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

利用易查分制作分班查询系统,怎么导入数据?

暑假过半&#xff0c;新学期即将到来&#xff0c;这对学校来说是一个重要的时刻。新学期的开始意味着学校将面临新生入学和老生升入高年级的情况&#xff0c;这就需要进行分班工作的安排。分班工作是一项繁琐而关键的任务&#xff0c;它直接关系到学生们在新学期中的班级和同学…

【Linux进程篇】进程概念(1)

【Linux进程篇】进程概念&#xff08;1&#xff09; 目录 【Linux进程篇】进程概念&#xff08;1&#xff09;进程基本概念描述进程-PCBtask_struct-PCB的一种task_ struct内容分类 组织进程查看进程通过系统调用获取进程标示符通过系统调用创建进程——fork初识 作者&#xff…

SpringMVC源码分析 —— 拦截器是何时调用的

SpringMVC源码分析&#xff0c;拦截器是何时、以什么方式调用的&#xff1f;本文将进行详细说明 环境准备 springboot 2.3.7.RELEASE 笔者创建一个springboot的web项目&#xff0c;使用的springboot的版本是2.3.7.RELEASE 对应的spring-web版本是5.2.12.RELEASE 下面将对上面…

【NLP-新工具】语音转文本与OpenAI的用途

一、说明 OpenAI最近2022发布了一个名为Whisper的新语音识别模型。与DALLE-2和GPT-3不同&#xff0c;Whisper是一个免费的开源模型。它的主要功能就是将语音翻译成文本。本文将介绍如何使用这个重要应用库。 二、 Whisper概念 2.1 Whisper是啥&#xff1f; Whisper 是一种自动…

考完软考,有什么备考心得和学习经验可以分享吗?

恭&#xfffd;&#xfffd;您完成软考考试&#xff01;备考软考确实是一项艰苦的任务&#xff0c;但也是一次很有收获的学习和成长过程。下面分享一些备考心得和学习经验&#xff0c;以及针对系统集成项目管理工程师和信息系统项目管理师考试的备考建议&#xff1a; 备考心得…

PACS系统源码:支持三维重建功能、集成放射科管理RIS系统、图文报告编辑、打印、多级审核机制

PACS系统源码 PACS系统是以最新的IT技术为基础&#xff0c;遵循医疗卫生行业IHE/DICOM3.0和HL7标准&#xff0c;开发的多功能服务器和阅片系统。通过简单高性能的阅片功能&#xff0c;支持繁忙时的影像诊断业务&#xff0c;拥有保存影像的院内Web传输及离线影像等功能&#xf…

【Android】APP网络优化学习笔记

网络优化原因 进行网络优化对于移动应用程序而言非常重要&#xff0c;原因如下&#xff1a; 用户体验&#xff1a; 网络连接是移动应用程序的核心功能之一。通过进行网络优化&#xff0c;可以提高应用的加载速度和响应速度&#xff0c;减少用户等待时间&#xff0c;提供更流…

跨境电商还有人在做吗,这十大选品技巧建议收藏!

随着电商的快速发展&#xff0c;无论国内或者国外电商&#xff0c;竞争都比较激烈&#xff0c;很多人觉得现在入行太晚了&#xff0c;玩不过那些老卖家。 不过我想说的是&#xff1a;做电商很重要的一点就是选品&#xff0c;那些很早一批老卖家可能也是借着红利期走过来的&…

ATFX汇市:美联储加息25基点,虽提振美指,或招致衰退

环球汇市行情摘要—— 上周&#xff0c;美元指数上涨0.6%&#xff0c;收盘在101.7点&#xff0c; 欧元贬值0.96%&#xff0c;收盘价1.1017点&#xff1b; 日元升值0.47%&#xff0c;收盘价141.16点&#xff1b; 英镑贬值0.01%&#xff0c;收盘价1.2852点&#xff1b; 瑞郎…

微信小程序配置上传多个u-upload上传

微信小程序配置上传多个u-upload上传 使用的是uView框架 微信小程序配置上传多个u-upload上传图片 场景需求&#xff1a;根据PC端配置项追加图片配置 小程序根据配置的图片数量&#xff0c;图片名称&#xff0c;进行上传图片 难度在于 我们不知道用户会追加多少个图片配置字段 …

预测性维护和预防性维护的区别

预测性维护和预防性维护是两种不同的设备维护策略&#xff0c;它们在维护时机、方法和效果上存在明显的区别。在工业生产和设备管理中&#xff0c;选择适合的维护方式对于提高设备的可靠性、延长寿命以及降低维护成本至关重要。本文将深入探讨预测性维护和预防性维护的区别及其…

【LeetCode】剑指offer礼物的最大价值

礼物的最大价值 题目描述算法分析编程代码 链接: 礼物的最大价值 题目描述 算法分析 编程代码 class Solution { public:int maxValue(vector<vector<int>>& grid) {int m grid.size();int n grid[0].size();vector<vector<int>> dp(m1,vector…

开利网络受邀参与战略合作伙伴和合控股 聚焦数据价值

近日&#xff0c;开利网络战略合作伙伴和合控股组织的“数据聚焦价值&#xff0c;引导数据化转型”主体研讨会&#xff0c;开利网络作为和合控股的战略合作伙伴和“数利丰”应用技术合作方&#xff0c;受邀进行落地应用分享。 随着“数字中国”战略的提出&#xff0c;数据已然成…

【爬虫逆向案例】某易云音乐(评论)js逆向—— params、encSecKey解密

声明&#xff1a;本文只作学习研究&#xff0c;禁止用于非法用途&#xff0c;否则后果自负&#xff0c;如有侵权&#xff0c;请告知删除&#xff0c;谢谢&#xff01; 【爬虫逆向案例】某易云音乐&#xff08;评论&#xff09;js逆向—— params、encSecKey解密 1、前言2、行动…

day57|● 647. 回文子串 ● 516.最长回文子序列

647. 回文子串 https://leetcode.cn/problems/palindromic-substrings/solution/by-lfool-2mvg/ Given a string s, return the number of palindromic substrings in it. A string is a palindrome when it reads the same backward as forward. A substring is a contiguous…

【Spring事务学习】事务分类 隔离级别 事务传播机制

目录 需要知道&#xff1a; &#x1f351;1、什么是事务&#xff1f; &#x1f351;2、事务的主要操作3个 一、Spring中事务的实现方式 &#x1f351;1、编程式事务&#xff08;手动写代码操作事务&#xff09;&#xff08;了解&#xff09; &#x1f351;2、声明式事务&…

【模型预测控制MPC】使用离散、连续、线性或非线性模型对预测控制进行建模(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…

营销服一体化CRM有哪些?5款CRM系统对比

如今&#xff0c;一个成熟的CRM产品体系已从过去单点销售管理转变为营销、服务、交易的客户全旅程覆盖。那么在这个互联网信息化时代&#xff0c;面对海量的信息&#xff0c;用户很难快速准确地找到属于自己感兴趣的内容的&#xff0c;所以用户画像、兴趣标签变得越来越重要。 …

TCP三次握手和四次挥手以及11种状态(二)

11种状态 1、一开始&#xff0c;建立连接之前服务器和客户端的状态都为CLOSED&#xff1b; 2、服务器创建socket后开始监听&#xff0c;变为LISTEN状态&#xff1b; 3、客户端请求建立连接&#xff0c;向服务器发送SYN报文&#xff0c;客户端的状态变味SYN_SENT&#xff1b; 4、…

低代码在数智化时代中的应用

随着科技的发展&#xff0c;企业从生产到经营中海量的数据持续被记录。数据是望远镜&#xff0c;发现完全不同的商业边界&#xff1b;数据是显微镜&#xff0c;判断肉眼察觉不到的消费和生活行为&#xff1b;数据是雷达&#xff0c;帮助企业提前预测未来的行为。 而通过人工智…