HCIP——OSPF的防环机制

news2025/1/11 4:16:36

OSPF的防环机制

  • 一、域间防环
  • 二、域内防环
    • 有向图转化
      • 1、有向图的画法
      • 2、示例:
  • 三、SPF算法

OSPF将整个OSPF域划分为多个区域,区域内部通过拓扑信息计算路由,区域间传递路由信息,实现全网可达。OSPF防环机制主要是体现在域内防环和域间防环。

一、域间防环

  • OSPF的星型拓扑划分规则实际上就是一种防环手段。OSPF要求所有的非0区域必须与骨干区域直接相连,区域间路由需经由骨干区域中转。OSPF要求所有的非0区域必须与骨干区域直接相连, 区域间( Inter- - Area Route )路由需经由骨干区域中转。这个要求使得区域间的路由传递不能发生在两个非0的区域之间,这在很大程度上规避了区域间路由环路的发生,也使得OSPF的区域架构在逻辑上形成了一个类似星型的拓扑,如下图所示。
    在这里插入图片描述

  • ABR从非骨干区域收到的Type-3 LSA不能用于区域间路由的计算。当一台 ABR 在非 Area0 的区域中收到 Type- - 3 LSA 时,虽然它会将其装载进 LSDB ,但是该路由器不会使用这些 Type- - 3 LSA 进行路由计算,当然它更不会将这些 Type- - 3 LSA 再注入回Area0 中。
    在这里插入图片描述

  • 区域之间存在水平分割机制,从某个区域学到的路由信息不会再通告到这个区域,这和距离适量协议的水平分割相似,区域水平分割可以概括为:从此区域出,不进此区域。
    在这里插入图片描述

二、域内防环

OSPF基于一类二类LSA的洪泛收集区域内的拓扑信息,将这些拓扑信息转化为有向图,再用SPF算法将有向图转化为最短路径树,而树形结构是无环的,OSPF最后依据树形结构将路由加载到路由表中。

有向图转化

一类LSA描述了某个设备的接口信息,二类LSA只是一类LSA对MA网络的补充,通过查看一二类LSA可以画出单区域的有向图。

1、有向图的画法

  • 一类LSA中有四种接口类型,这里我们不考虑virtual类型
TypeLink IDData
p-2-p邻居的RID该网段上本地接口的IP地址
TransNetDR的接口的IP地址该网段上本地接口的IP地址
StubNet该Stub网段的IP网络地址该网段的网路掩码
Virtual虚连接邻居的RID去往该虚连接的本地接口IP
  • Stub网段表示该网段只有数据入口,例如一个Loopback接口就是一个Stub网段。转化为有向图时路由器为一个圈,stub网段也是一个圈,然后再画一条路由器指向stub网段的箭头,箭头上添上该接口的开销值,表示路由器到该网段的需要的开销值。
    描述拓扑结构——路由器节点和Stub网段
    在这里插入图片描述
  • Transit网段即一个MA网段,从路由器到所连Transit网段的开销值就是连接到这个网段的接口所配
    置的开销值。从一个Transit网段到连接到这个网段的路由器的开销为0。下图的N1也被称为伪节点。
    描述拓扑结构——Transit网段
    在这里插入图片描述

在描述点到点接口的Router-LSA中:
1、通告一个到邻居路由器的点到点链接,Link ID设置为对端的Router
ID,Data设置为本地接口的IP地址;
2、 通告一个到该点到点网段的Stub连接,Link ID设置为该点到点网段
的网络号,Data设置为该点到点网段的网络掩码;
3、上述两个连接的Cost值均为该点到点接口上的Cost值。

  • 一类LSA在描述p2p网络时,由于点到点链路两端接口的网络号可能不一致,所以需要有两个link对其描述。
  • 两接口处于不同网段的点到点网段的规则如下:两台路由器经由两条有向线段直接相连,每个方向一条。两个接口的网段被表示成Stub网段。每个路由器通告一个Stub连接到该路由器所连的网段
    描述拓扑结构——点对点网段
    在这里插入图片描述
  • 两接口处于同一网段的点到点网段的规则如下:两台路由器经由两条有向线段直接相连,每个方向一条。连接两个接口的网段被表示成Stub网段。
    描述点对点网段
    在这里插入图片描述

2、示例:

计算最短路径树——物理拓扑
在这里插入图片描述
由LSDB描述的有向图
在这里插入图片描述

三、SPF算法

SPF算法每一个路由器都将自己作为根(ROOT)来计算其到每一个目的地路由器的距离,每一个路由器根据一个统一的数据库会计算出路由域的拓扑结构图,该结构图类似于一棵树,在SPF算法中,被称为最短路径树。OSPF计算阶段分为两个阶段:

第一阶段计算Transit节点,忽略Stub节点,生成一个最短路径树
第二阶段只计算Stub节点,将Stub网段挂到最短路径树上去

计算过程中首先初始化最短路径树,RTA将自己做为根节点添加到最短路径树上
在这里插入图片描述

  • RTA将自己添加到最短路径树上之后,检查自己生成的Router-LSA,对于该LSA中所描述的每一个连接,如果不是一个Stub连接,就把该连接添加到候选列表中,端点ID为Link ID,到根端点的开销为LSA中描述的Metric值。本例中,添加端点4.4.4.4和2.2.2.2。
    在这里插入图片描述
  • 将候选列表中到根端点开销最小的端点移到最短路径树上
    在这里插入图片描述
    在这里插入图片描述
  • 当有新节点添加到最短路径树上的时候,则检查LS ID为新节点的link-idID的LSA,本例中检查LS ID为2.2.2.2的LSA。
    如果LSA中所描述的连接的Link ID在最短路径树上已经存在,则忽略该连接。本例中,Link ID为1.1.1.1的连接被忽略,只有10.3.1.1的连接被添加到候选列表中。到根端点的开销设置为此连接的Metric值(本例中此连接的Metric值为1)与父端点(本例中此连接的父端点为2.2.2.2)到根端点的开销(本例中此开销值为48)之和。
    在这里插入图片描述
    将候选列表中到根端点的开销最小的端点移动到最短路径树上,本例中,将10.3.1.1移到最短路径树上。
    在这里插入图片描述
    在这里插入图片描述
  • 检查LS ID为最新添加节点的端点ID的LSA,本例中检查LS ID为10.3.1.1的LSA。
    在所描述的连接中,忽略2.2.2.2,将3.3.3.3和4.4.4.4添加到候选列表中。从Transit网段到所连路由器的开销为0。如果在候选列表中出现两个端点ID一样但是到根端点的开销不一样的端点,则删除到根端点的开销大的端点。
    在这里插入图片描述
    将候选列表中到根端点的开销最小的端点移动到最短路径树上,本例中,将3.3.3.3移到最短路径树上。
    在这里插入图片描述
    在这里插入图片描述
  • 检查LS ID为最新添加节点的端点ID的LSA,本例中检查LS ID为3.3.3.3的LSA。
    本例中,没有新端点被添加到候选列表中。
    在这里插入图片描述
  • 将候选列表中到根端点的开销最小的端点移动到最短路径树上,本例中,将4.4.4.4移到最短路径树上。
    在这里插入图片描述
    在这里插入图片描述
  • 检查LS ID为最新添加节点的端点ID的LSA,本例中检查LS ID为4.4.4.4的LSA。
    本例中,没有新端点被添加到候选列表中。如果在此时候选列表为空,则计算最短路径树的第一阶段结束。
    在这里插入图片描述
  • 检查每个路由器端点的Router-LSA,计算Stub网段。
    本例中,首先检查RTA的Router-LSA,共有三个Stub网段。
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/806261.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

python3GUI--我的二维码生成工具By:PyQt5(附UI源码)

文章目录 一.前言二.展示1.主界面2.主界面-选择颜色(动图)3.主界面-选择样式(动图) 三.思路1.UI设计2.核心3.其他1.为什么调整了样式左侧二维码就跟着变化2.首次启动软件生成的文件哪里来的3.作…

华为8月8日将推出系统云翻新功能:P40/Mate 30系列首发

7月28日消息,7月28日消息,华为终端公司近日在微博上发布重要公告,宣布将于8月8日推出全新的系统云翻新功能。据悉,该功能将首次应用于华为 P40 系列手机和 Mate30 系列手机,为用户提供更便捷的手机数据备份和恢复体验。…

如何降低机场人员定位系统成本?哪种方案简单又好用?

一、方案简介 机场是一个室内空间巨大的人员聚集地差旅人员找不到出入口、卫生间、商铺为找检票口而误车等是很常见的现状。面对这些问题,机场信息数字化建设成为一种最为有效的解决方式! 华安联大通过多技术融合实现室内外位置健全,推出一…

【机密计算-大厂有话说】微软 Azure

什么是机密计算? 机密计算是由机密计算联盟 (CCC) 定义的一个行业术语,CCC 是专注于定义并加速机密计算落地的基金会。 CCC 给机密计算的定义是:通过在基于硬件的可信执行环境 (TEE) 中执行计算来保护使用中的数据。 TEE 是是一个只能执行授权…

Jetbrains idea 代码关闭 注释自动渲染 导致换行不生效

方法1 关闭注释自动渲染 取消勾选 方法2 结尾使用 <br> 强制换行

【Python】logging模块笔记

目录 日志级别 四个组件 记录器 处理器 处理器 格式化器 格式 用法1&#xff1a;小项目可以采用编程的方法 用法2&#xff1a;建议采用配置文件的方式 用法3&#xff1a; 字典配置 日志级别 #默认的日志输出为warning # 使用baseConfig() 来指定日志输出级别 # 同时&#x…

每日一题——找到消失的数字

找到消失的数字 题目链接 思路 一个长度为n的数组中所有数据的范围在[1,n]内&#xff0c;题目要求我们找出在[1,n]范围内&#xff0c;但数组中没有出现的数字 如果可以使用额外空间&#xff0c;那这题就好办了。我们直接创建一个相同大小的数组&#xff0c;数组的每个位置代…

三. 多传感器标定方案(空间同步)--2

前面的内容&#xff1a; 一. 器件选型心得&#xff08;系统设计&#xff09;--1_goldqiu的博客-CSDN博客 一. 器件选型心得&#xff08;系统设计&#xff09;--2_goldqiu的博客-CSDN博客 二. 多传感器时间同步方案&#xff08;时序闭环&#xff09;--1 三. 多传感器标定方案…

AI聊天GPT三步上篮!

1、是什么&#xff1f; CHATGPT是OpenAI开发的基于GPT&#xff08;Generative Pre-trained Transformer&#xff09;架构的聊天型人工智能模型。也就是你问它答&#xff0c;根据网络抓去训练 2、怎么用&#xff1f; 清晰表达自己诉求&#xff0c;因为它就是一个AI助手&#…

【腾讯云 Cloud Studio 实战训练营】Cloud Studio实现健康上报小程序(代码开源)

目录 &#x1f373;前言&#x1f373;实验介绍&#x1f373;产品介绍&#x1f373;注册Cloud Stdio&#x1f373;后端Spring服务&#x1f373;创建项目上传项目数据库连接与导入 &#x1f373;Vue后台管理创建项目编辑模板信息选择环境镜像上传资源文件 &#x1f373;小程序⭐总…

容器演进时间轴及容器技术演进

1.1 1979年 — chroot 容器技术的概念可以追溯到1979年的UNIX chroot。 它是一套“UNIX操作系统”系统&#xff0c;旨在将其root目录及其它子目录变更至文件系统内的新位置&#xff0c;且只接受特定进程的访问。 这项功能的设计目的在于为每个进程提供一套隔离化磁盘空间。 …

NIM游戏/SG函数

NIM游戏 先看一下一维 NIM游戏。 有一堆大小为 n 的石子&#xff0c;甲和乙轮流从石堆里面拿石子&#xff0c;不能一次拿掉所有石子&#xff0c;取走最后一个石子的人获胜&#xff0c;甲先开始&#xff0c;谁是必胜的&#xff1f; 显然&#xff0c;谁先手&#xff0c;谁就获胜…

蓝桥杯单片机第五届国赛 真题+代码

onewire.c /* # 单总线代码片段说明1. 本文件夹中提供的驱动代码供参赛选手完成程序设计参考。2. 参赛选手可以自行编写相关代码或以该代码为基础&#xff0c;根据所选单片机类型、运行速度和试题中对单片机时钟频率的要求&#xff0c;进行代码调试和修改。 */// #include …

Opencv的Mat内容学习

来源&#xff1a;Opencv的Mat内容小记 - 知乎 (zhihu.com) 1.Mat是一种图像容器&#xff0c;是二维向量。 灰度图的Mat一般存放<uchar>类型 RGB彩色图像一般存放<Vec3b>类型。 (1)单通道灰度图数据存放样式&#xff1a; (2)RGB三通道彩色图存放形式不同&#x…

微服务性能分析工具 Pyroscope 初体验

Go 自带接口性能分析工具 pprof&#xff0c;较为常用的有以下 4 种分析&#xff1a; CPU Profiling: CPU 分析&#xff0c;按照一定的频率采集所监听的应用程序 CPU&#xff08;含寄存器&#xff09;的使用情况&#xff0c;可确定应用程序在主动消耗 CPU 周期时花费时间的位置…

数值线性代数:奇异值分解SVD

本文记录计算矩阵奇异值分解SVD的原理与流程。 注1&#xff1a;限于研究水平&#xff0c;分析难免不当&#xff0c;欢迎批评指正。 零、预修 0.1 矩阵的奇异值 设列满秩矩阵&#xff0c;若的特征值为&#xff0c;则称为矩阵的奇异值。 0.2 SVD(分解)定理 设&#xff0c;则…

❤ Redirected when going from “/login“ to “/“ via a navigation guard错误

❤ vue路由遇到 Redirected when going from “/login“ to “/“ via a navigation guard错误 路由版本&#xff1a;“vue-router”: “^3.5.2”, 添加了路由守卫&#xff0c;然后开始报这个错误&#xff0c; 原因 就是路由版本导致的 解决办法 // 导航守卫限制路由跳转 …

Jenkins插件管理切换国内源地址

一、替换国内插件下载地址 选择系统管理–>插件管理–> Available Plugins 并等待页面完全加载完成、这样做是为了把jenkins官方的插件列表下载到本地、接着修改地址文件、替换为国内插件地址 进入插件文件目录 cd /var/lib/jenkins/updatesdefault.json 为插件源地址…

比较两字符串数组中对应位置元素的大小char.greater()和char.less()

【小白从小学Python、C、Java】 【计算机等考500强证书考研】 【Python-数据分析】 比较两字符串数组中 对应位置元素的大小 char.greater()和char.less() [太阳]选择题 下列代码最后输出的结果是&#xff1f; import numpy as np x1 np.array([a, bc, D]) print("【显…

go 查询采购单设备事项V3

一、版本说明 本版本在整合上两次的功能基础上&#xff0c;引进ini配置文件的读取事项&#xff0c;快速读取本地配置文件&#xff0c;完成读取设置 第一版&#xff1a;实现了严格匹配模式的查找 https://blog.csdn.net/wtt234/article/details/131979385 第二版&#xff1a;实…