容器演进时间轴及容器技术演进

news2025/1/11 5:44:23

1.1 1979年 — chroot

  • 容器技术的概念可以追溯到1979年的UNIX chroot。

  • 它是一套“UNIX操作系统”系统,旨在将其root目录及其它子目录变更至文件系统内的新位置,且只接受特定进程的访问。

  • 这项功能的设计目的在于为每个进程提供一套隔离化磁盘空间。

  • 1982年其被添加至BSD当中。

1.2 2000年 — FreeBSD Jails

  • FreeBSD Jails是由Derrick T. Woolworth于2000年在FreeBSD研发协会中构建而成的早期容器技术之一。

  • 这是一套“操作系统”系统,与chroot的定位类似,不过其中包含有其它进程沙箱机制以对文件系统、用户及网络等资源进行隔离。

  • 通过这种方式,它能够为每个Jail、定制化软件安装包乃至配置方案等提供一个对应的IP地址。

1.3 2001年 — Linux VServer

  • Linux VServer属于另一种jail机制,其能够被用于保护计算机系统之上各分区资源的安全(包括文件系统、CPU时间、网络地址以及内存等)。

  • 每个分区被称为一套安全背景(security context),而其中的虚拟化系统则被称为一套虚拟私有服务器。

1.4 2004年 — Solaris容器

  • Solaris容器诞生之时面向x86与SPARC系统架构,其最初亮相于2004年2月的Solaris 10 Build 51 beta当中,随后于2005年正式登陆Solaris 10的完整版本。

  • Solaris容器相当于将系统资源控制与由分区提供的边界加以结合。各分区立足于单一操作系统实例之内以完全隔离的虚拟服务器形式运行。

1.5 2005年 — OpenVZ

  • OpenVZ与Solaris容器非常相似,且使用安装有补丁的Linux内核以实现虚拟化、隔离能力、资源管理以及检查点交付。

  • 每套OpenVZ容器拥有一套隔离化文件系统、用户与用户群组、一套进程树、网络、设备以及IPC对象。

1.6 2006年 — Process容器

  • Process容器于2006年由谷歌公司推出,旨在对一整套进程集合中的资源使用量(包括CPU、内存、磁盘I/O以及网络等等)加以限制、分配与隔离。

  • 此后其被更名为Control Groups(即控制组),从而避免其中的“容器”字眼与Linux内核2.6.24中的另一术语出现冲突。这表明了谷歌公司率先重视容器技术的敏锐眼光以及为其做出的突出贡献。

1.7 2007年 — Control Groups

Control Groups也就是谷歌实现的cgroups,其于2007年被添加至Linux内核当中。

1.8 2008年 — LXC

  • LXC指代的是Linux Containers

  • 是第一套完整的Linux容器管理实现方案。

  • 其功能通过cgroups以及Linux namespaces实现。

  • LXC通过liblxc库进行交付,并提供可与Python3、Python2、Lua、Go、Ruby以及Haskell等语言相对接的API。

  • 相较于其它容器技术,LXC能够在无需任何额外补丁的前提下运行在原版Linux内核之上。

1.9 2011年 — Warden

  • Warden由CloudFoundry公司于2011年所建立,其利用LXC作为初始阶段,随后又将其替换为自家实现方案。

  • 与LXC不同,Warden并不会与Linux紧密耦合。相反,其能够运行在任意能够提供多种隔离环境方式的操作系统之上。Warden以后台进程方式运行并提供API以实现容器管理。

1.10 2013年 — LMCTFY

  • Lmctfy代表的是“Let Me Contain That For You(帮你实现容器化)”。它其实属于谷歌容器技术堆栈的开源版本,负责提供Linux应用程序容器。谷歌公司在该项目的起步阶段宣称其能够提供值得信赖的性能表现、高资源利用率、共享资源机制、充裕的发展空间以及趋近于零的额外资源消耗。

  • 2013年10月lmctfy的首个版本正式推出,谷歌公司在2015年决定将lmctfy的核心概念与抽象机制转化为libcontainer。在失去了主干之后,如今lmctfy已经失去一切积极的发展势头。

  Libcontainer项目最初由Docker公司建立,如今已经被归入开放容器基金会的管辖范畴。

1.11 2013年-Docker

  • 在2013年Docker刚发布的时候,它是一款基于LXC的开源容器管理引擎。

  • 把LXC复杂的容器创建与使用方式简化为Docker自己的一套命令体系。

  • 随着Docker的不断发展,它开始有了更为远大的目标,那就是反向定义容器的实现标准,将底层实现都抽象化到Libcontainer的接口。这就意味着,底层容器的实现方式变成了一种可变的方案,无论是使用namespace、cgroups技术抑或是使用systemd等其他方案,只要实现了Libcontainer定义的一组接口,Docker都可以运行。这也为Docker实现全面的跨平台带来了可能。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/806232.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

NIM游戏/SG函数

NIM游戏 先看一下一维 NIM游戏。 有一堆大小为 n 的石子,甲和乙轮流从石堆里面拿石子,不能一次拿掉所有石子,取走最后一个石子的人获胜,甲先开始,谁是必胜的? 显然,谁先手,谁就获胜…

蓝桥杯单片机第五届国赛 真题+代码

onewire.c /* # 单总线代码片段说明1. 本文件夹中提供的驱动代码供参赛选手完成程序设计参考。2. 参赛选手可以自行编写相关代码或以该代码为基础,根据所选单片机类型、运行速度和试题中对单片机时钟频率的要求,进行代码调试和修改。 */// #include …

Opencv的Mat内容学习

来源&#xff1a;Opencv的Mat内容小记 - 知乎 (zhihu.com) 1.Mat是一种图像容器&#xff0c;是二维向量。 灰度图的Mat一般存放<uchar>类型 RGB彩色图像一般存放<Vec3b>类型。 (1)单通道灰度图数据存放样式&#xff1a; (2)RGB三通道彩色图存放形式不同&#x…

微服务性能分析工具 Pyroscope 初体验

Go 自带接口性能分析工具 pprof&#xff0c;较为常用的有以下 4 种分析&#xff1a; CPU Profiling: CPU 分析&#xff0c;按照一定的频率采集所监听的应用程序 CPU&#xff08;含寄存器&#xff09;的使用情况&#xff0c;可确定应用程序在主动消耗 CPU 周期时花费时间的位置…

数值线性代数:奇异值分解SVD

本文记录计算矩阵奇异值分解SVD的原理与流程。 注1&#xff1a;限于研究水平&#xff0c;分析难免不当&#xff0c;欢迎批评指正。 零、预修 0.1 矩阵的奇异值 设列满秩矩阵&#xff0c;若的特征值为&#xff0c;则称为矩阵的奇异值。 0.2 SVD(分解)定理 设&#xff0c;则…

❤ Redirected when going from “/login“ to “/“ via a navigation guard错误

❤ vue路由遇到 Redirected when going from “/login“ to “/“ via a navigation guard错误 路由版本&#xff1a;“vue-router”: “^3.5.2”, 添加了路由守卫&#xff0c;然后开始报这个错误&#xff0c; 原因 就是路由版本导致的 解决办法 // 导航守卫限制路由跳转 …

Jenkins插件管理切换国内源地址

一、替换国内插件下载地址 选择系统管理–>插件管理–> Available Plugins 并等待页面完全加载完成、这样做是为了把jenkins官方的插件列表下载到本地、接着修改地址文件、替换为国内插件地址 进入插件文件目录 cd /var/lib/jenkins/updatesdefault.json 为插件源地址…

比较两字符串数组中对应位置元素的大小char.greater()和char.less()

【小白从小学Python、C、Java】 【计算机等考500强证书考研】 【Python-数据分析】 比较两字符串数组中 对应位置元素的大小 char.greater()和char.less() [太阳]选择题 下列代码最后输出的结果是&#xff1f; import numpy as np x1 np.array([a, bc, D]) print("【显…

go 查询采购单设备事项V3

一、版本说明 本版本在整合上两次的功能基础上&#xff0c;引进ini配置文件的读取事项&#xff0c;快速读取本地配置文件&#xff0c;完成读取设置 第一版&#xff1a;实现了严格匹配模式的查找 https://blog.csdn.net/wtt234/article/details/131979385 第二版&#xff1a;实…

整数转换-C语言/Java

描述 整数转换。编写一个函数&#xff0c;确定需要改变几个位才能将整数A转成整数B。A&#xff0c;B范围在[-2147483648, 2147483647]之间。 示例1&#xff1a; 输入&#xff1a;A 29 &#xff08;或者0b11101&#xff09;, B 15&#xff08;或者0b01111&#xff09; 输出&…

c++数据锁链

题目描述&#xff1a; 创建一个结构体为Node&#xff0c;具有value , next 两个属性&#xff1b; value为整型&#xff0c;用来储存结构体数值&#xff1b; next为Node类型指针&#xff0c;用来指向下一组数据地址&#xff1b; 第1组数据value 5&#xff1b; 第2组数据value …

1400*C. String Equality(greedy)

Example input 4 3 3 abc bcd 4 2 abba azza 2 1 zz aa 6 2 aaabba ddddcc output No Yes No Yes 题意&#xff1a; 字符串a和b&#xff0c;其字母顺序可以任意交换&#xff0c;k个连续的相同字母&#xff0c;可以全部变为大于这个字母的其他字母&#xff08;bb->cc&…

小程序动态隐藏分享按钮

// 禁用分享 wx.hideShareMenu({menus: [shareAppMessage, shareTimeline] })// 显示分享 wx.showShareMenu({withShareTicket: true,menus: [shareAppMessage, shareTimeline] })//私密消息 wx.updateShareMenu({isPrivateMessage: true, })

Docker容器监控之 CAdvisor+InfluxDB+Granfana

通过docker stats命令可以很方便的看到当前宿主机上所有容器的CPU,内存以及网络流量等数据&#xff0c;一般小公司够用了。但是&#xff0c;docker stats统计结果只能是当前宿主机的全部容器&#xff0c;数据资料是实时的&#xff0c;没有地方存储、没有健康指标过线预警等功能…

Tensorflow预训练模型ckpt与pb两种文件类型的介绍

我们在 Tensorflow无人车使用移动端的SSD(单发多框检测)来识别物体及Graph的认识 熟悉了Graph计算图以及在 Tensorflow2.0中function(是1.0版本的Graph的推荐替代)的相关知识介绍 这个tf.function的用法&#xff0c;了解到控制流与计算图的各自作用&#xff0c;无论使用哪种方…

向量vector与erase()

运行代码&#xff1a; //向量vector与erase() #include"std_lib_facilities.h" //声明Item类 struct Item {string name;int iid;double value;Item():name(" "),iid(0),value(0.0){}Item(string ss,int ii,double vv):name(ss),iid(ii),value(vv){}frien…

数据库原理1——《小猫猫大课堂》数据库原理篇

宝子&#xff0c;你不点个赞吗&#xff1f;不评个论吗&#xff1f;不收个藏吗&#xff1f; 最后的最后&#xff0c;关注我&#xff0c;关注我&#xff0c;关注我&#xff0c;你会看到更多有趣的博客哦&#xff01;&#xff01;&#xff01; 喵喵喵&#xff0c;你对我真的很重要…

分布式锁中的王者方案 - Redission

文章目录 5.1 分布式锁-redission功能介绍5.2 分布式锁-Redission快速入门5.3 分布式锁-redission可重入锁原理5.4 分布式锁-redission锁重试和WatchDog机制5.5 分布式锁-redission锁的MutiLock原理 5.1 分布式锁-redission功能介绍 基于setnx实现的分布式锁存在下面的问题&am…

【如何训练一个中英翻译模型】LSTM机器翻译模型部署之onnx(python)(四)

系列文章 【如何训练一个中英翻译模型】LSTM机器翻译seq2seq字符编码&#xff08;一&#xff09; 【如何训练一个中英翻译模型】LSTM机器翻译模型训练与保存&#xff08;二&#xff09; 【如何训练一个中英翻译模型】LSTM机器翻译模型部署&#xff08;三&#xff09; 【如何…