使⽤最⼩花费爬楼梯
746 . 使用最小花费爬楼梯
链接: 746 . 使用最小花费爬楼梯
给你一个整数数组 cost ,其中 cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。一旦你支付此费用,即可选择向上爬一个或者两个台阶。
你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。
请你计算并返回达到楼梯顶部的最低花费。
示例 1:
输入:cost = [10,15,20]
输出:15
解释:你将从下标为 1 的台阶开始。
- 支付 15 ,向上爬两个台阶,到达楼梯顶部。
总花费为 15 。
示例 2:
输入:cost = [1,100,1,1,1,100,1,1,100,1]
输出:6
解释:你将从下标为 0 的台阶开始。
- 支付 1 ,向上爬两个台阶,到达下标为 2 的台阶。
- 支付 1 ,向上爬两个台阶,到达下标为 4 的台阶。
- 支付 1 ,向上爬两个台阶,到达下标为 6 的台阶。
- 支付 1 ,向上爬一个台阶,到达下标为 7 的台阶。
- 支付 1 ,向上爬两个台阶,到达下标为 9 的台阶。
- 支付 1 ,向上爬一个台阶,到达楼梯顶部。
总花费为 6 。
1.状态表示
dp[i] 表示的是爬到第 i 阶楼梯时的最低花费。
2.状态转移方程
动态规划题,我们需要学会依靠经验和题目解析去猜测他们的状态转移方程。
爬到第i 阶位置,只有两种情况:
- 从 i-1 阶 爬一阶楼梯到 i;
- 从 i-2 阶 爬二阶楼梯到 i;
所以dp[i] 的值只需要 去其中的较小值即可,
dp[i]=min(dp[i-1]+cost[i-1],dp[i-2]+cost[i-2]);
3. 初始化
从我们的递推公式可以看出, dp[i] 在 i = 0 以及 i = 1 的时候是没有办法进⾏推导的,因为dp[i-2] 或 dp[i-1] 不是⼀个有效的数据。
因此我们需要在填表之前,将0, 1的值初始化。题⽬中已经告诉我们
dp[0] = dp[1]=0
4. 填表顺序
按照数组下标的顺序,从左往右。
5. 返回值
应该返回 dp[n] 的值。
代码:
int minCostClimbingStairs(vector<int>& cost) {
int n=cost.size();
vector<int> dp(n+1);
dp[0]=dp[1]=0;
for(int i=2;i<=n;i++)
{
dp[i]=min(dp[i-1]+cost[i-1],dp[i-2]+cost[i-2]);
}
return dp[n];
}
解码方法
91 . 解码方法
一条包含字母 A-Z 的消息通过以下映射进行了 编码 :
‘A’ -> “1”
‘B’ -> “2”
…
‘Z’ -> “26”
要 解码 已编码的消息,所有数字必须基于上述映射的方法,反向映射回字母(可能有多种方法)。例如,“11106” 可以映射为:
“AAJF” ,将消息分组为 (1 1 10 6)
“KJF” ,将消息分组为 (11 10 6)
注意,消息不能分组为 (1 11 06) ,因为 “06” 不能映射为 “F” ,这是由于 “6” 和 “06” 在映射中并不等价。
给你一个只含数字的 非空 字符串 s ,请计算并返回 解码 方法的 总数 。
题目数据保证答案肯定是一个 32 位 的整数。
示例 1:
输入:s = “12”
输出:2
解释:它可以解码为 “AB”(1 2)或者 “L”(12)。
示例 2:
输入:s = “226”
输出:3
解释:它可以解码为 “BZ” (2 26), “VF” (22 6), 或者 “BBF” (2 2 6) 。
示例 3:
输入:s = “06”
输出:0
解释:“06” 无法映射到 “F” ,因为存在前导零(“6” 和 “06” 并不等价)。
1.状态表示
dp[i] 表示的是以第i位置为结尾时的解码方法数。
2.状态转移方程
动态规划题,我们需要学会依靠经验和题目解析去猜测他们的状态转移方程。
以 i-1 的位置进行分析,有两种情况:
- i位置是的数字在 1~9 之间,能单独表示一个字母
- i和i-1 位置的数字可以组成一个在 10 ~ 26 之间的一个字母
所以
i. 当 s[i] 上的数在 [1, 9] 区间上时: dp[i] += dp[i - 1]
;
ii. 当 s[i - 1] 与 s[i] 上的数结合后,在 [10, 26] 之间的时候: dp[i] +=dp[i - 2]
;
3. 初始化
从我们的递推公式可以看出, dp[i] 在 i = 0 以及 i = 1 的时候是没有办法进⾏推导的,因为dp[i-2] 或 dp[i-1] 不是⼀个有效的数据。
因此我们需要在填表之前,将0, 1的值初始化。
- 当s[0]不为‘0’ 时,dp[0]=1; 否则,dp[0]=0;
- 当s[1]!=‘0’ 时,dp[1]+=1; 当 s[0] 与 s[1] 上的数结合后,在 [10, 26] 之间的时,dp[1]+=1;
4. 填表顺序
按照数组下标的顺序,从左往右。
5. 返回值
应该返回 dp[n-1] 的值。
代码
int numDecodings(string s) {
//动态规划
//创建dp[]数组
//初始化
//填表
//返回值
int n=s.size();
vector<int> dp(n);
//初始化
if(s[0]=='0') return 0;
dp[0]=1;
if(n==1) return dp[0];
if(s[1]!='0') dp[1]+=1;
int t= (s[0]-'0')*10+s[1]-'0';
if(t>=10&&t<=26)
{
dp[1]+=1;
}
for(int i=2;i<n;i++)
{
if(s[i]!='0') dp[i]+=dp[i-1];
int t= (s[i-1]-'0')*10+s[i]-'0';
if(t>=10&&t<=26)
{
dp[i]+=dp[i-2];
}
}
return dp[n-1];
}