看看ChatGPT的Embedding接口都完成哪些任务

news2025/1/11 22:48:11

调用Embedding接口完成文本分类

前面博客介绍了如何调用ChatGPT的Embedding接口完成文本聚类任务,实现过程入下图所示:

 除了完成文本分类,调用Embedding接口还可完成聚类任务。

调用Embedding接口完成聚类任务

聚类任务是一种无监督学习任务,其目的是将一组数据点划分成若干个类别或簇,使得同一个簇内的数据点之间的相似度尽可能高,而不同簇之间的相似度尽可能低。聚类算法可以帮助我们发现数据中的内在结构和模式,发现异常点和离群值,简化数据表示。大白话讲就是无监督学习的内容分类。下面的代码中,读取的数据文件是带向量的20_newsgroup_with_embdding.parquet数据,即调用ChatGPT的Embedding接口生成向量信息。原始的20_newsgroup是来源于“from sklearn.datasets import fetch_20newsgroups”。


import numpy as np
from sklearn.cluster import KMeans
import pandas as pd
from IPython.display import display

embedding_df = pd.read_parquet("cluster/20_newsgroup_with_embedding.parquet")

matrix = np.vstack(embedding_df.embedding.values)
num_of_clusters = 20

kmeans = KMeans(n_clusters=num_of_clusters,
                init="k-means++", n_init=10, random_state=42)
kmeans.fit(matrix)
labels = kmeans.labels_
embedding_df["cluster"] = labels
embedding_df.head()

# 统计每个cluster的数量
new_df = embedding_df.groupby(
    'cluster')['cluster'].count().reset_index(name='count')

# 统计这个cluster里最多的分类的数量
title_count = embedding_df.groupby(
    ['cluster', 'title']).size().reset_index(name='title_count')
first_titles = title_count.groupby('cluster').apply(
    lambda x: x.nlargest(1, columns=['title_count']))
first_titles = first_titles.reset_index(drop=True)
new_df = pd.merge(new_df, first_titles[[
                  'cluster', 'title', 'title_count']], on='cluster', how='left')
new_df = new_df.rename(
    columns={'title': 'rank1', 'title_count': 'rank1_count'})

# 统计这个cluster里第二多的分类的数量
second_titles = title_count[~title_count['title'].isin(first_titles['title'])]
second_titles = second_titles.groupby('cluster').apply(
    lambda x: x.nlargest(1, columns=['title_count']))
second_titles = second_titles.reset_index(drop=True)
new_df = pd.merge(new_df, second_titles[[
                  'cluster', 'title', 'title_count']], on='cluster', how='left')
new_df = new_df.rename(
    columns={'title': 'rank2', 'title_count': 'rank2_count'})
new_df['first_percentage'] = (
    new_df['rank1_count'] / new_df['count']).map(lambda x: '{:.2%}'.format(x))
# 将缺失值替换为 0
new_df.fillna(0, inplace=True)
# 输出结果
display(new_df)

上面的代码读取带向量的文本信息后,再调用比较简单的聚类算法K-means完成聚类任务,因为知道原始数据是来源于不同类型的20种news,所以调用Kmeans函数时,传入的number_of_cluster是20.后续的代码主要是验证Kmeans算法得到的聚类结果准确性。下面的表格是验证逻辑输出的结果,通过计算每种cluster中前两类类型的占比来看聚类准确率,以cluster0为例,first_percentage的占比是93%,说明聚类效果比较好。

 总结而言,调用Eembedding接口完成聚类的任务的步骤如下,和文本分类步骤很相似。

 调用Embedding接口优化检索功能

在了解如何使用Embedding接口优化检索功能时,我们先来看Elasticsearch是如何做检索。Elasticsearch是一个基于Lucene的开源搜索引擎,它提供了分布式、多租户的全文搜索引擎服务。Elasticsearch的搜索原理如下所示:

  1. 文档索引:在Elasticsearch中,所有的数据都被组织成一个或多个索引。每个索引包含一个或多个文档,每个文档都有一个唯一的ID和一个或多个字段。

  2. 分词:在搜索之前,查询语句和文档中的字段都需要进行分词处理,将它们分成一个个词语。

  3. 倒排索引:Elasticsearch使用倒排索引来加快搜索速度。倒排索引是一种数据结构,它将每个词语映射到包含该词语的所有文档中,这样就可以快速地找到包含某个词语的所有文档。

  4. 搜索:当用户发送一个查询请求时,Elasticsearch会对查询进行解析和分析,并在倒排索引中查找匹配的文档。Elasticsearch会计算每个文档的相关度分数,并将最相关的文档返回给用户。

  5. 分片:由于数据量可能非常大,Elasticsearch将索引划分为多个分片(shard),每个分片存储索引的一部分数据。当搜索请求发送到集群时,它会被发送到每个分片,然后每个分片都会返回匹配的文档。

  6. 聚合:Elasticsearch还支持聚合操作,可以对搜索结果进行统计、分组、排序等操作。聚合操作可以帮助用户更好地理解数据,提供更有价值的信息。

总结而言,Elasticsearch是通过对查询语句和文档进行分词处理,检索时进行匹配检索的。例如,“气质小清新拼接百搭双肩斜挎包”这样的商品名称,拆分成“气质”“小清新”“拼接”“百搭”“双肩”“斜挎包”。每个标题都是这样切分。然后,建立一个索引,比如“气质”这个词,出现过的标题的编号,都按编号顺序跟在气质后面。其他的词也类似。当用户搜索的时候,比如用户搜索“气质背包”,也会拆分成“气质”和“背包”两个词。然后就根据这两个词,找到包含这些词的标题,根据出现的词的数量、权重等等找出一些商品。通过分词检索可以检索到相关内容,但是如果是相近含义的词语检索可能效果就不太理想。对于这个点,Elasticsearch也提供了一些解决办法:

  1. 同义词过滤器:Elasticsearch可以使用同义词过滤器来将多个词语视为同一个词语。例如,将“汽车”、“轿车”和“车辆”视为同一个词语。

  2. 正则化:在搜索期间,Elasticsearch会对搜索词进行正则化,以便将不同形式的同一词语视为同一个词语。例如,将“running”和“ran”视为同一个词语。

  3. 模糊搜索:Elasticsearch可以使用模糊搜索来查找与搜索词相似的词语。这对于处理拼写错误或仅了解部分词汇的情况非常有用。

其中模糊检索,正则化在常规软件检索功能中也经常用到,同义词过滤的方法,需要将相关同义词都归纳进来才行,而且要完成一个复杂的检索,以电商为例,需要整合的同义词非常多。除了这些方法外,实际还可以利用自然语言处理技术,即利用自然语言处理技术中判断两个词语是否是同义词来完成同义词检索。

    因为ChatGPT开放了Eebedding接口,那么完全可以获取文本的向量信息,然后通过计算距离来确定文本相似性,从而提升相近词语检索准确度。下面的这段代码通过计算检索的内容与原有的所有product的向量见的余弦距离,来找到匹配最相近的内容。

import openai
import os
from openai.embeddings_utils import get_embedding, cosine_similarity
import pandas as pd
import numpy as np

openai.api_key = os.environ.get("OPENAI_API_KEY")
embedding_model = "text-embedding-ada-002"

# read the reviews embedding information
# load data
datafile_path = "cluster/product_with_embedding.csv"

df = pd.read_csv(datafile_path)
df["embedding"] = df.embedding.apply(eval).apply(
    np.array)  # convert string to array

# search through the reviews for a specific product
def search_product(df, query, n=3, pprint=True):
    product_embedding = get_embedding(
        query,
        engine=embedding_model
    )
    df["similarity"] = df.embedding.apply(
        lambda x: cosine_similarity(x, product_embedding))

    results = (
        df.sort_values("similarity", ascending=False)
        .head(n)
        .productname
    )
    if pprint:
        for r in results:
            print(r)
    return results

results = search_product(df, "凉快的裙子", n=3)

 代码中设置了找到最相近的三个product,当检索“凉快的裙子”的时候,原始的product文件中并没有完全相同的词语,因为采用向量间距离的方式,最终检索出了三条数据,例如清凉透气,轻盈凉爽等,和用检索的目标product很贴近。总结而言,调用Embeeding接口,优化检索能力的过程如下所示:

另外,除了上面的优化检索功能,还可以应用到推荐产品的冷启动上。

调用Embedding接口完成推荐系统的冷启动

推荐系统的“冷启动”问题是指,在推荐系统开始运行时或添加新的产品时,由于缺乏足够的用户行为数据或产品元数据,导致推荐系统无法准确预测用户喜好或推荐相应的产品。这个问题对于新产品的上线和新用户的注册都是很常见的。在这种情况下,推荐系统需要寻找其他的方式来生成个性化推荐,例如利用用户的基本信息、偏好标签等,或者采用基于内容的推荐或混合推荐方法。在有了Eebedding接口后,可以提前生成所有product的向量信息,当用户在review某个product时,可以计算review的product的向量信息与其他product的向量间的距离来推荐给用户。总结而言辅助进行冷启动的过程如下所示:

当然上面的代码只是一个demo code,因为每次检索都需要计算和所有产品的余弦距离,如果product很多的情况下,检索性能不一定高,在实际项目中可以利用一些能快速检索向量相似性的库来提升匹配性能。例如Faiss,Faiss(Facebook AI Similarity Search)是Facebook开源的一个高性能相似性搜索库,其主要作用是进行向量的相似性搜索和聚类。Faiss是基于高度优化的算法实现的,具有快速高效的搜索速度和低内存占用等优点。它支持多种相似性度量,包括欧几里得距离、内积和余弦相似度等,还提供了多种搜索算法,如精确搜索、近似搜索和聚类等。

除了Faiss,还有Pinecone、Weaviate等。Pinecone是一种托管服务,用于存储、索引和查询向量。它旨在帮助开发人员更轻松地构建、部署和管理基于向量的应用程序,如搜索、推荐和相似性匹配。Pinecone提供高性能的向量索引和查询,可以支持海量向量的存储和快速检索。同时,它还提供了简单易用的API和客户端库,可以轻松地将向量集成到应用程序中。

Weaviate是一种基于向量搜索的开源知识图谱和搜索引擎,使用GraphQL API进行查询。它支持半结构化和非结构化数据,并使用机器学习算法为实体和属性赋予向量表示。这使得Weaviate能够对数据进行相似度搜索,例如:相似问题,相似产品,相似文章等。Weaviate还具有自动化数据管理和验证功能,可以轻松地添加,更新和删除实体,属性和关系。

总结而言,通过调用ChatGPT的Embedding接口获取向量信息,存储到Pinecone或者Weaviate等服务上,通过计算输入信息也已有信息的向量距离,可以快速进行相似性度量。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/801368.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

tinymce实现将word中内容(文字图片等)直接粘贴至编辑器中——利用插件tinymce-powerpaste-plugin

TinyMCE是一款易用、且功能强大的所见即所得的富文本编辑器。同类程序有:UEditor、Kindeditor、Simditor、CKEditor、wangEditor、Suneditor、froala等等。 TinyMCE的优势: 开源可商用,基于LGPL2.1 插件丰富,自带插件基本涵盖日常…

活字格性能优化技巧——如何利用数据库主键提升访问性能

大家都知道,活字格作为企业级低代码开发平台,拥有6大引擎,3大能力,能够高效落地企业级应用。在每年的应用大赛中也能看到很多格友利用活字格做了很多复杂的应用,例如2021年企业级低代码应用大赛中宁波聚轩利用活字格做…

vue使用qrcodejs2-fix或者qrcodejs2插件生成二维码

1. vue2安装 npm i qrcodejs2 1.1. vue3安装 npm install qrcodejs2-fix 2. 组件中引入并封装成公共组件&#xff0c;vue3版 <template><!-- 二维码生成 --><div class"body-div"><div style"width: 100%;height: 100%;" :id&quo…

誉天程序员-2301-3-day05

文章目录 知识回归1、单点登录SSO single sign on&#xff08;面试必考&#xff0c;10分&#xff09;2、Vue重大的扩展&#xff0c;Vue框架越来越完善&#xff0c;Vuex状态管理&#xff08;共享数据&#xff09; 全局守卫嵌套路由 知识回归 1、单点登录SSO single sign on&…

Vue2基础七、refnextTick自定义指令

零、文章目录 Vue2基础七、ref&nextTick&自定义指令 1、ref **作用&#xff1a;**利用 ref 和 $refs 可以用于 获取 dom 元素, 或 组件实例**特点&#xff1a;**查找范围 → 当前组件内 (更精确稳定)&#xff0c;用document.querySelect(‘.box’) 获取的是整个页面…

Ubuntu Server版 之 mysql 系列(-),安装、远程连接,mysql 创建用户、授权等

Ubuntu 分 桌面版 和 服务版 桌面版 &#xff1a;有额外的简易界面 服务版&#xff1a;是纯黑框的。没有任何UI界面的可言 安装mysql 安装位置 一般按照的位置存放在 /usr/bin 中 sudo apt-get install mysql-server查看mysql的状态 service mysql status mysql 安全设置…

【C语言课程设计】图书管理系统

引言&#xff1a; 图书管理系统是一个重要的信息管理系统&#xff0c;对于图书馆和书店等机构来说&#xff0c;它能够方便地管理图书的录入、显示、查询、修改和删除等操作。本实验基于C语言开发了一个简单的图书管理系统&#xff0c;通过账户名和密码进行系统访问和权限控制&a…

java数组对象初始化分析

分析代码 public static void main(String[] args) {int a10,b20,c30,d 40,e 50,f60;int aa[] {a,b,c,d,e,f};aa[2] 100;}代码的字节码 图解分析 refs https://docs.oracle.com/javase/specs/jvms/se19/html/jvms-6.html#jvms-6.5.aloadhttps://docs.oracle.com/javase/sp…

WebServer

socket是啥&#xff1f; 网络套接字&#xff08;Socket&#xff09;通常被表示为一个类或类似于类的数据结构。网络套接字类封装了网络通信的细节&#xff0c;并提供了用于建立、发送和接收网络数据的方法和属性。常见的成员有源端口&#xff0c;目标端口&#xff0c;源IP,目…

C语言:结构体,联合体

文章目录 一、结构体1.结构体的声明和结构体变量的定义2.结构体变量初始化3. 访问结构体成员4.结构体的内存对齐 二、联合(共用体)总结 一、结构体 结构体是一组元素类型不同的元素的集合 1.结构体的声明和结构体变量的定义 结构体的声明包含三个部分&#xff0c;标记名(tag…

uniapp 微信小程序:页面+组件的生命周期顺序

uniapp 微信小程序&#xff1a;页面组件的生命周期顺序 首页页面父组件子组件完整顺序参考资料 这个uniapp的微信小程序项目使用的是 VUE2 首页 首页只提供了一个跳转按钮。 <template><view><navigator url"/pages/myPage/myPage?namejerry" hov…

Vue中使用Typescript及Typescript基础

准备工作 新建一个基于ts的vue项目 通过官方脚手架构建安装 # 1. 如果没有安装 Vue CLI 就先安装 npm install --global vue/cli最新的Vue CLI工具允许开发者 使用 TypeScript 集成环境 创建新项目。 只需运行vue create my-app 然后选择选项&#xff0c;箭头键选择 Manuall…

国产芯片架构再下一城,ARM或被彻底抛弃,外媒:自作自受

有消息指出特定厂商的5G手机芯片将采用RISC-V架构&#xff0c;这是国产芯片彻底抛弃ARM的标志&#xff0c;毕竟ARM如今对中国芯片越来越不友好&#xff0c;最新款的ARM V9架构就未对多家中国芯片企业授权&#xff0c;抛弃ARM在情理之中。 据悉特定企业的5G手机芯片为RISC-V架构…

Vue项目中强制刷新页面的方法

我们在动态切换组件的过程中&#xff0c;导航栏和底栏不动&#xff0c;动态切换中间区域的情况&#xff0c;在首页可以进行跳转任意组件&#xff0c;在组件与组件之间不能相互跳转&#xff0c;路由发生了变化&#xff0c;但是页面未改变&#xff0c;这时我们就需要强制刷新页面…

窗口透明丨窗口透明度设置控件透明以及窗体透明源码

透明窗口&#xff08;窗口上面文字图片等内容不透明&#xff09;的实现&#xff08;使用SetLayeredWindowAttributes API函数&#xff09; SetLayeredWindowAttributes的实现必须将窗口设置为WS_EX_LAYERED的扩展风格。 然而&#xff0c;只有WS_POPUP窗口才能设置WS_EX_LAYER…

SG函数Nim游戏博弈论

移棋子游戏 题目 https://vjudge.csgrandeur.cn/problem/LibreOJ-10243 给定一个有 N 个节点的有向无环图&#xff0c;图中某些节点上有棋子&#xff0c;两名玩家交替移动棋子。 玩家每一步可将任意一颗棋子沿一条有向边移动到另一个点&#xff0c;无法移动者输掉游戏。 对…

中国撤销3000亿订单,美芯质问还能卖给谁?Intel或暂停工厂

过去两年多来&#xff0c;美国芯片行业的收入大幅减少&#xff0c;然而这还不是低点&#xff0c;近期传出中国或撤销3200亿美元的芯片订单&#xff0c;这更是让美国芯片行业震惊&#xff0c;美芯巨头因此质问美国芯片卖给谁&#xff1f; 中国这几年一直都在稳步减少芯片进口&am…

PHP高校二手物品交易系统【纯干货分享,免费领源码04827】

目 录 摘要 1 绪论 1.1 研究背景 1.2国内外研究现状 1.3论文结构与章节安排 2 高校二手物品交易系统系统分析 2.1 可行性分析 2.2 系统流程分析 2.2.1 数据流程 3.3.2 业务流程 2.3 系统功能分析 2.3.1 功能性分析 2.3.2 非功能性分析 2.4 系统用例分析 2.5本章…

Java开发基础系列(十四):集合对象(Map)

&#x1f60a; 作者&#xff1a; 一恍过去 &#x1f496; 主页&#xff1a; https://blog.csdn.net/zhuocailing3390 &#x1f38a; 社区&#xff1a; Java技术栈交流 &#x1f389; 主题&#xff1a; Java开发基础系列(十三)&#xff1a;集合对象(Map) ⏱️ 创作时间&…

zlog日志库的使用

代码仓库&#xff1a;https://github.com/HardySimpson/zlog1、zlog 库的默认安装位置是 /usr/local/lib&#xff0c;头文件的安装位置是 /usr/local/include&#xff1b;若需要更改安裝位置&#xff0c;可以修改src/makefile文件下第50行的PREFIX&#xff1f; /usr/local 改为…