基于CNN卷积神经网络的调制信号识别算法matlab仿真

news2024/11/17 4:48:58

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

1. 卷积神经网络(CNN)

2. 调制信号识别

3.实现过程

5.算法完整程序工程


1.算法运行效果图预览

 

 

2.算法运行软件版本

MATLAB2022A

3.部分核心程序

% 构建调制类型分类的卷积神经网络模型modClassNet
modClassNet = [
  imageInputLayer([1 spf 2], 'Normalization', 'none', 'Name', 'Input Layer')
  
  convolution2dLayer(filterSize, 16*netWidth, 'Padding', 'same', 'Name', 'CNN1')
  batchNormalizationLayer('Name', 'BN1')
  reluLayer('Name', 'ReLU1')
  maxPooling2dLayer(poolSize, 'Stride', [1 2], 'Name', 'MaxPool1')
  
  convolution2dLayer(filterSize, 24*netWidth, 'Padding', 'same', 'Name', 'CNN2')
  batchNormalizationLayer('Name', 'BN2')
  reluLayer('Name', 'ReLU2')
  maxPooling2dLayer(poolSize, 'Stride', [1 2], 'Name', 'MaxPool2')
  
  convolution2dLayer(filterSize, 32*netWidth, 'Padding', 'same', 'Name', 'CNN3')
  batchNormalizationLayer('Name', 'BN3')
  reluLayer('Name', 'ReLU3')
  maxPooling2dLayer(poolSize, 'Stride', [1 2], 'Name', 'MaxPool3')
  
  convolution2dLayer(filterSize, 48*netWidth, 'Padding', 'same', 'Name', 'CNN4')
  batchNormalizationLayer('Name', 'BN4')
  reluLayer('Name', 'ReLU4')
  maxPooling2dLayer(poolSize, 'Stride', [1 2], 'Name', 'MaxPool4')
  
  convolution2dLayer(filterSize, 64*netWidth, 'Padding', 'same', 'Name', 'CNN5')
  batchNormalizationLayer('Name', 'BN5')
  reluLayer('Name', 'ReLU5')
  maxPooling2dLayer(poolSize, 'Stride', [1 2], 'Name', 'MaxPool5')
  
  convolution2dLayer(filterSize, 96*netWidth, 'Padding', 'same', 'Name', 'CNN6')
  batchNormalizationLayer('Name', 'BN6')
  reluLayer('Name', 'ReLU6')
  
  convolution2dLayer(filterSize, 128*netWidth, 'Padding', 'same', 'Name', 'CNN7')
  batchNormalizationLayer('Name', 'BN7')
  reluLayer('Name', 'ReLU7')
  
  averagePooling2dLayer([1 ceil(spf/32)], 'Name', 'AP1')
  
  fullyConnectedLayer(numModTypes, 'Name', 'FC1')
  softmaxLayer('Name', 'SoftMax')
  
  classificationLayer('Name', 'Output') ]
% 分析网络结构并展示网络的层次结构
analyzeNetwork(modClassNet)

 
% 最大训练轮数,网络将在此轮数结束后停止训练
maxEpochs           = 15;
% 每次迭代的小批量样本数量
miniBatchSize       = 256;
% 每隔多少次迭代进行一次验证,用于观察验证集上的性能
validationFrequency = 20;
% 设置训练选项,包括优化算法(adam)、学习率、训练轮数、小批量样本数量、是否每轮迭代都重新打乱数据、是否绘制训练进度图、是否显示训练过程信息、验证数据和验证频率、学习率衰减策略等

options = trainingOptions('adam', ...
  'InitialLearnRate',1e-2, ...
  'MaxEpochs',maxEpochs, ...
  'MiniBatchSize',miniBatchSize, ...
  'Shuffle','every-epoch', ...
  'Plots','training-progress', ...
  'Verbose',false, ...
  'ValidationData',{rxValidation,rxValidationLabel}, ...
  'ValidationFrequency',validationFrequency, ...
  'LearnRateSchedule', 'piecewise', ...
  'LearnRateDropPeriod', 9, ...
  'LearnRateDropFactor', 0.1, ...
  'ExecutionEnvironment', 'multi-gpu');

% 使用训练数据集rxTraining和标签rxTrainingLabel,利用设置的模型modClassNet和训练选项options训练得到调制类型分类的神经网络模型trainedNet0SNR_v7

trainedNet0SNR_v7 = trainNetwork(rxTraining,rxTrainingLabel,modClassNet,options);
0030

4.算法理论概述

        在无线通信系统中,调制信号的识别是一项重要的任务。通过识别接收到的信号的调制方式,可以对信号进行解调和解码,从而实现正确的数据传输和通信。卷积神经网络(Convolutional Neural Network,CNN)是一种深度学习模型,在图像和信号处理领域取得了显著的成功。

1. 卷积神经网络(CNN)

       CNN是一种深度学习模型,主要用于图像处理和模式识别任务。其核心原理是使用卷积层、池化层和全连接层来提取特征和进行分类。以下是CNN中常用的数学原理:

       卷积层: 卷积层通过滤波器(也称为卷积核)来提取图像或信号的特征。卷积操作通过将滤波器与输入图像或信号的局部区域进行元素相乘,并求和得到输出特征图。

       池化层: 池化层用于减小特征图的尺寸,并降低计算复杂度。常见的池化操作有最大池化和平均池化。 

       全连接层: 全连接层将池化层输出的特征图映射到具体的分类结果,常用于分类任务。

2. 调制信号识别

        调制信号识别任务是将接收到的信号进行分类,确定其调制方式。通常,调制信号可以表示为复数形式:

其中,$A$为信号的幅度,$f_c$为信号的载频频率,$\phi(t)$为信号的相位。 

3.实现过程

1. 数据预处理

        首先,需要准备用于训练和测试的调制信号数据集。数据预处理包括信号采样、归一化、分割成时域序列,并将其转换为CNN网络的输入格式。

2. 搭建CNN网络

        构建卷积神经网络模型,可以根据任务的复杂性和需求选择合适的网络结构。一般来说,包含若干卷积层、池化层、全连接层和输出层。

3. 训练CNN模型

       使用准备好的调制信号数据集,对CNN模型进行训练。训练过程中需要定义损失函数(通常使用交叉熵损失函数)和优化算法(如随机梯度下降),通过反向传播算法不断更新模型的参数,使其逐渐收敛到最优状态。

4. 测试和验证

       训练完成后,使用测试集对模型进行验证和评估。计算准确率、精确度、召回率等指标来评估模型的性能。

5. 调制信号识别

        最终,将训练好的CNN模型用于调制信号的识别。通过将接收到的信号输入CNN模型,得到分类结果,确定信号的调制方式。

5.算法完整程序工程

OOOOO

OOO

O

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/800437.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

支付宝短视频平台创作分成激励项目

没想到支付宝也开通了中视频计划,这波羊毛算是蒿定了,最近啊,马爸爸火速上线了支付宝创作分成计划,明显就是抄的抖音中视频计划,目前还在内测阶段,补贴的力度非常大,错过的话就只能拍大腿了&…

Prometheus 的应用服务发现及黑河部署等

目录 promtool检查语法 部署Prometheus Server 检查语法是否规范 部署node-exporter 部署Consul 直接请求API进行服务注册 使用register命令注册服务(建议使用) 单个和多个注册,多个后面多加了s 在Prometheus上做consul的服务发现 部署…

windows安装linux

https://www.cnblogs.com/liuqingzheng/p/16271895.html 咱们安装linux系统是centos7 准备工作: 安装软件:vmware -------虚拟机 官网下载地址:下载 VMware Workstation Pro | CN 也可以从这里面下载 链接:https://pan.bai…

MySQL优化(面试)

文章目录 通信优化查询缓存语法解析及查询优化器查询优化器的策略 性能优化建议数据类型优化索引优化 优化关联查询优化limit分页对于varchar end mysql查询过程: 客户端向MySQL服务器发送一条查询请求服务器首先检查查询缓存,如果命中缓存,则立刻返回存…

行车遥控接线图

这个一般只有电工才会用。 主要是 【共线和总电】让人疑惑。 这图实际就是PLC的梯形图。 共电:接主电源。【它串联10A保险丝,再到继电器】 总电:它是所有继电器的公共端。【共电的继电器吸合,共电和总电就直通了。】共电的继电器…

Io进、线程——进程的基础

进程的基础 进程是计算机中最基本的执行单位,是程序在操作系统中的一次执行过程。每个进程都有自己的地址空间、数据栈、程序计数器等,相互之间独立运行,互不干扰。进程间的通信通过特定的机制来实现,进程的创建和撤销由操作系统…

详解Mybatis之动态sql问题

编译软件:IntelliJ IDEA 2019.2.4 x64 操作系统:win10 x64 位 家庭版 Maven版本:apache-maven-3.6.3 Mybatis版本:3.5.6 文章目录 一. 在sql映射文件中如何写注释?二. 什么是动态sql?三. 动态sql常用标签有…

Vue项目如何生成树形目录结构

文章底部有个人公众号:热爱技术的小郑。主要分享开发知识、有兴趣的可以关注一手。 前言 项目的目录结构清晰、可以帮助我们更快理顺项目的整体构成。在写文档之类的时候也比较方便。生成树形目录的方式有多种,我这里简单介绍其中一种较为简单的实现 过…

CSP 2021入门级 第一轮 题目讲解

A: a进栈,直接出栈;b进栈,直接出栈;c进栈,直接出栈;d进栈,直接出栈;e进栈,直接出栈。 B:全进栈后全出栈。 C:a和b先进栈,然后直接出…

【雕爷学编程】MicroPython动手做(09)——零基础学MaixPy之人脸识别2

自己打包kfpkg,试着整了好几次,都是无法烧录,只好不做第七步了,直接把前面获得的人脸识别模型烧录了 烧录完成后,打开IDE串口,确认开发板Maixpy固件的版本,好像是前期的稳定版本V0.4.0 第九步&a…

idea中创建请求基本操作

文章目录 说明效果创建GET请求没有参数带有参数带有环境变量带有动态参数 说明 首先通过###三个井号键来分开每个请求体,然后请求url和header参数是紧紧挨着的,请求参数不管是POST的body传参还是GET的parameter传参,都是要换行的,…

Java版本spring cloud + spring boot 电子招标采购系统源码

营造全面规范安全的电子招投标环境,促进招投标市场健康可持续发展 传统采购模式面临的挑战 一、立项管理 1、招标立项申请 功能点:招标类项目立项申请入口,用户可以保存为草稿,提交。 2、非招标立项申请 功能点:非招标…

《MySQL》第十二篇 数据类型

目录 一. 整数类型二. 浮点类型三. 日期和时间类型四. 字符串类型五. 枚举值类型六. 二进制类型七. 小结 MySQL 支持多种数据类型,学习好数据类型,才能更好的学习 MySQL 表的设计,让表的设计更加合理。 一. 整数类型 类型大小SIGNED(有符号)…

网红项目AutoGPT源码内幕及综合案例实战(三)

AutoGPT on LangChain PromptGenerator等源码解析 本节阅读AutoGPT 的prompt_generator.py源代码,其中定义了一个PromptGenerator类和一个get_prompt函数,用于生成一个提示词信息。PromptGenerator类提供了添加约束、命令、资源和性能评估等内容的方法,_generate_numbered_l…

effective c++ 条款2

条款2 常量(const)替换宏(#define)指针常量类成员常量 枚举(enum)替换宏(#define)模板函数(template inline)替换宏函数 尽量用const,enum,inline替换#define 总结就是: 常量(const)替换宏(#define) // uppercase names are usually for macros #define ASPECT_R…

HTML基础 第一课

文章目录 什么是HTMLHTML规范标签的种类开闭合标签整合标签标签中的属性 我的第一个HTML 什么是HTML Hyper Text Markup Language 超文本标记语言 超文本:表示页面上的一切要素,正如Java中的万物皆对象一样,在网页中包含 普通的文本样式 结构 视频 音频…

c++ 面试错题整理

在C中,下列哪个语句用于定义一个字符串变量?(D) A. string myString; B. char myString[]; C. String myString; D. char* myString; 关于为什么不是A,我猜测可能是因为string本质上是一个类。 C中的引用与指针有什么…

element-ui 合并表格行

element-ui 合并表格行操作 需求描述 动态获取数据后,将ID相同的行,ID合并成一个。 官方方法 //rowIndex当前行号 columnIndex当前列号 由此可知道每一行渲染时都会调用当前方法,只不过在渲染过程中设置了它合并的行数和列数,…

【Java】Spring关于Bean的存和取、Spring的执行流程以及Bean的作用域和生命周期

Spring项目的创建普通的存和取存储Bean创建Bean将Bean注册到容器中 获取并使用Bean获取Spring上下文获取并使用 更简单的存和取存储Bean配置扫描路径添加注解类注解Bean的命名规则五大注解的区别方法注解Bean方法注解要配合类注解使用重命名 Bean有参数的方法 获取Bean属性注入…

uniapp:H5定位当前省市区街道信息

高德地图api,H5定位省市区街道信息。 由于uniapp的uni.getLocation在H5不能获取到省市区街道信息,所以这里使用高德的逆地理编码接口地址接口,通过传key和当前经纬度,获取到省市区街道数据。 这里需要注意的是:**高德…