锁可以从不同的角都分类。其中乐观锁和悲观锁是一种分类方式
一、悲观锁、乐观锁定义
悲观锁就是我们常说到的锁。对于悲观锁来说,他总是认为每次访问共享资源时会发生冲突,所以必须每次数据操作加上锁,以保证临界区的程序同一时间只能有一个线程在执行。
乐观锁又称为“无锁”,顾名思义,它是乐观派。乐观锁总是假设对共享资源的访问没有冲突,线程可以不停地执行,无需加锁也无需等待。而一旦多个线程发生冲突, 乐观锁通常是使用一种称为CAS的技术来保证线程执行的安全性。
由于无锁操作中没有锁的存在,因此不肯能出现死锁的情况,也就是说乐观锁天生免疫死锁。
乐观锁多用于“读多写少”的环境,避免频繁加锁影响性能;而悲观锁锁用于“写多读少”的环境。避免频繁失败和重试影响性能。
二、实现方式
悲观锁的实现方式是加锁,加锁既可以是对代码块加锁(如Java的synchronized关键字),也可以是对数据加锁。synchronized关键字和Lock的实现类都是悲观锁。
乐观锁的实现方式主要有两种:CAS机制和版本号机制。乐观锁在Java中是通过使用无锁编程来实现,最常采用的是CAS算法,Java原子类中的递增操作就通过CAS自旋实现的。
1、CAS(Compare And Swap)
CAS操作包括了3个操作数:
- 需要读写的内存位置(V)
- 进行比较的预期值(A)
- 拟写入的新值(B)
CAS操作逻辑如下:如果内存位置V的值等于预期的A值,则将该位置更新为新值B,否则不进行任何操作。许多CAS的操作是自旋的:如果操作不成功,会一直重试,直到操作成功为止。
这里引出一个新的问题,既然CAS包含了Compare和Swap两个操作,它又如何保证原子性呢?答案是:CAS是由CPU支持的原子操作,其原子性是在硬件层面进行保证的。
下面以Java中的自增操作(i++)为例,看一下悲观锁和CAS分别是如何保证线程安全的。我们知道,在Java中自增操作不是原子操作,它实际上包含三个独立的操作:(1)读取i值;(2)加1;(3)将新值写回i。
因此,如果并发执行自增操作,可能导致计算结果的不准确。在下面的代码示例中:value1没有进行任何线程安全方面的保护,value2使用了乐观锁(CAS),value3使用了悲观锁(synchronized)。运行程序,使用1000个线程同时对value1、value2和value3进行自增操作,可以发现:value2和value3的值总是等于1000,而value1的值常常小于1000。
public class suo {
//value1:线程不安全
private static int value1 = 0;
//value2:使用乐观锁
private static AtomicInteger value2 = new AtomicInteger(0);
//value3:使用悲观锁
private static int value3 = 0;
private static synchronized void increaseValue3(){
value3++;
}
public static void main(String[] args) throws Exception {
//开启1000个线程,并执行自增操作
for(int i = 0; i < 1000; ++i){
new Thread(new Runnable() {
@Override
public void run() {
try {
Thread.sleep(100);
} catch (InterruptedException e) {
e.printStackTrace();
}
value1++;
value2.getAndIncrement();
increaseValue3();
}
}).start();
}
//打印结果
Thread.sleep(1000);
System.out.println("线程不安全:" + value1);
System.out.println("乐观锁(AtomicInteger):" + value2);
System.out.println("悲观锁(synchronized):" + value3);
}
}
输出
线程不安全:991
乐观锁(AtomicInteger):1000
悲观锁(synchronized):1000
首先来介绍AtomicInteger。AtomicInteger是java.util.concurrent.atomic包提供的原子类,利用CPU提供的CAS操作来保证原子性;除了AtomicInteger外,还有AtomicBoolean、AtomicLong、AtomicReference等众多原子类。
java是无法实现对底层内存的操作的,C++可以,java使用Unsafe类实现。
public class AtomicInteger extends Number implements java.io.Serializable {
private static final long serialVersionUID = 6214790243416807050L;
// setup to use Unsafe.compareAndSwapInt for updates
private static final Unsafe unsafe = Unsafe.getUnsafe();
private static final long valueOffset;
static {
try {
valueOffset = unsafe.objectFieldOffset
(AtomicInteger.class.getDeclaredField("value"));
} catch (Exception ex) { throw new Error(ex); }
}
private volatile int value;
- unsafe: 获取并操作内存的数据。
- valueOffset: 存储value在AtomicInteger中的偏移量。
- value: 存储AtomicInteger的int值,该属性需要借助volatile关键字保证其在线程间是可见的。
我们查看AtomicInteger的自增函数incrementAndGet()的源码时,发现自增函数底层调用的是unsafe.getAndAddInt()。但是由于JDK本身只有Unsafe.class,只通过class文件中的参数名,并不能很好的了解方法的作用,所以我们通过OpenJDK 8 来查看Unsafe的源码:
// ------------------------- JDK 8 -------------------------
// AtomicInteger 自增方法
public final int incrementAndGet() {
return unsafe.getAndAddInt(this, valueOffset, 1) + 1;
}
// Unsafe.class
public final int getAndAddInt(Object var1, long var2, int var4) {
int var5;
do {
var5 = this.getIntVolatile(var1, var2);
} while(!this.compareAndSwapInt(var1, var2, var5, var5 + var4));
return var5;
}
// ------------------------- OpenJDK 8 -------------------------
// Unsafe.java
public final int getAndAddInt(Object o, long offset, int delta) {
int v;
do {
v = getIntVolatile(o, offset);
} while (!compareAndSwapInt(o, offset, v, v + delta));
return v;
}
根据OpenJDK 8的源码我们可以看出,getAndAddInt()循环获取给定对象o中的偏移量处的值v,然后判断内存值是否等于v。如果相等则将内存值设置为 v + delta,否则返回false,继续循环进行重试,直到设置成功才能退出循环,并且将旧值返回。整个“比较+更新”操作封装在compareAndSwapInt()中,在JNI里是借助于一个CPU指令完成的,属于原子操作,可以保证多个线程都能够看到同一个变量的修改值。
其他源码:
public final boolean compareAndSet(int expect, int update) {
return unsafe.compareAndSwapInt(this, valueOffset, expect, update);
}
public final int getAndIncrement() {
return unsafe.getAndAddInt(this, valueOffset, 1);
}
- getAndIncrement()实现的自增操作是自旋CAS操作:在循环中进行compareAndSet,如果执行成功则退出,否则一直执行。
- 其中compareAndSet是CAS操作的核心,它是利用Unsafe对象实现的。
- Unsafe又是何许人也呢?Unsafe是用来帮助Java访问操作系统底层资源的类(如可以分配内存、释放内存),通过Unsafe,Java具有了底层操作能力,可以提升运行效率;强大的底层资源操作能力也带来了安全隐患(类的名字Unsafe也在提醒我们这一点),因此正常情况下用户无法使用。AtomicInteger在这里使用了Unsafe提供的CAS功能。
- valueOffset可以理解为value在内存中的偏移量,对应了CAS三个操作数(V/A/B)中的V;偏移量的获得也是通过Unsafe实现的。
- value域的volatile修饰符:Java并发编程要保证线程安全,需要保证原子性、可视性和有序性;CAS操作可以保证原子性,而volatile可以保证可视性和一定程度的有序性;在AtomicInteger中,volatile和CAS一起保证了线程安全性。关于volatile作用原理的说明涉及到Java内存模型(JMM),这里不详细展开。
2、版本号机制
除了CAS,版本号机制也可以用来实现乐观锁。版本号机制的基本思路是在数据中增加一个字段version,表示该数据的版本号,每当数据被修改,版本号加1。当某个线程查询数据时,将该数据的版本号一起查出来;当该线程更新数据时,判断当前版本号与之前读取的版本号是否一致,如果一致才进行操作。
需要注意的是,这里使用了版本号作为判断数据变化的标记,实际上可以根据实际情况选用其他能够标记数据版本的字段,如时间戳等。
三、优缺点和适用场景
1、功能限制
与悲观锁相比,乐观锁适用的场景受到了更多的限制,无论是CAS还是版本号机制。
例如,CAS只能保证单个变量操作的原子性,当涉及到多个变量时,CAS是无能为力的,而synchronized则可以通过对整个代码块加锁来处理。再比如版本号机制,如果query的时候是针对表1,而update的时候是针对表2,也很难通过简单的版本号来实现乐观锁。
2、竞争激烈程度
如果悲观锁和乐观锁都可以使用,那么选择就要考虑竞争的激烈程度:
当竞争不激烈 (出现并发冲突的概率小)时,乐观锁更有优势,因为悲观锁会锁住代码块或数据,其他线程无法同时访问,影响并发,而且加锁和释放锁都需要消耗额外的资源。
当竞争激烈(出现并发冲突的概率大)时,悲观锁更有优势,因为乐观锁在执行更新时频繁失败,需要不断重试,浪费CPU资源。
- 悲观锁适合写操作多的场景,先加锁可以保证写操作时数据正确。
- 乐观锁适合读操作多的场景,不加锁的特点能够使其读操作的性能大幅提升。
四、乐观锁加锁吗?
(1)乐观锁本身是不加锁的,只是在更新时判断一下数据是否被其他线程更新了;AtomicInteger便是一个例子。
(2)有时乐观锁可能与加锁操作合作。
五、CAS有哪些缺点
1、ABA问题
假设有两个线程——线程1和线程2,两个线程按照顺序进行以下操作:
(1)线程1读取内存中数据为A;
(2)线程2将该数据修改为B;
(3)线程2将该数据修改为A;
(4)线程1对数据进行CAS操作
在第(4)步中,由于内存中数据仍然为A,因此CAS操作成功,但实际上该数据已经被线程2修改过了。这就是ABA问题。
在AtomicInteger的例子中,ABA似乎没有什么危害。但是在某些场景下,ABA却会带来隐患,例如栈顶问题:一个栈的栈顶经过两次(或多次)变化又恢复了原值,但是栈可能已发生了变化。
对于ABA问题,比较有效的方案是引入版本号,内存中的值每发生一次变化,版本号都+1;在进行CAS操作时,不仅比较内存中的值,也会比较版本号,只有当二者都没有变化时,CAS才能执行成功。Java中的AtomicStampedReference类便是使用版本号来解决ABA问题的。这样变化过程就从“A-B-A”变成了“1A-2B-3A”。
2、循环时间长开销大
CAS操作如果长时间不成功,会导致其一直自旋,给CPU带来非常大的开销。
3、功能限制
只能保证一个共享变量的原子操作。对一个共享变量执行操作时,CAS能够保证原子操作,但是对多个共享变量操作时,CAS是无法保证操作的原子性的。