科技云报道:大模型的火烧到了AI服务器上

news2025/1/9 17:11:17

科技云报道原创。

大模型的纷争已经随着各大入局者公布产品后,热度逐渐退去,但是由大模型带来的产业链高频共振,已经传递了算力层。

表现最为激烈的,就是AI服务器市场。大模型带来的算力需求,直接引发了一波AI服务器抢购潮和涨价潮。
在这里插入图片描述

据《证券时报》报道,一家检测企业透露,他们在去年6月购买的8台AI服务器到今年三月已经涨价到130万每台,到现在价格飙升至160万每台。不到一年的时间,价格涨幅近20倍。

另外,AI服务器需求量大涨也直接引发了上游材料PPO(聚苯醚,用作高速覆铜板增强材料)的抢购潮,此前有业内相关人士坦言,由于全球PPO主流厂商仅一家,随着AI服务器的放量,PPO未来很有可能成为产业链上的紧缺环节之一。

在这样的背景下,AI服务器厂商扩产的消息也层出不穷。

鸿海集团旗下负责AI服务器业务的鸿佰科技就曾被曝出规划新增五到六条生产线,以应对AI服务器客户要求的消息。

市场火热度可见一斑,这也直接点燃了资本市场。

从1月份开始,以浪潮信息、中际旭创、工业富联为首的AI服务器概念股扶摇直上,多次涨停,甚至连长期亏损的寒武纪,股价都一路飘红。

爆火的“AI服务器”

AI服务器是什么?

AI服务器是一种专门设计用于执行人工智能(AI)、机器学习(ML)、深度学习(DL)等计算密集型任务的高性能服务器。

AI服务器通常配备有高效能的中央处理器(CPU)、图形处理器(GPU)、张量处理器(TPU)或专用的AI加速器,以及大量的内存和存储空间。

在异构方式上,AI服务器可以为CPU+GPU、CPU+FPGA、CPU+TPU、CPU+ASIC或CPU+多种加速卡。

具体的设计和配置可以根据需要进行大量并行处理的具体任务来进行调整。

目前,使用比较广泛的AI服务器是CPU+GPU。这也与传统的服务器区分开来。

据悉,传统服务器主要以CPU为算力提供者,但是在运作的过程中需要引入大量分支跳转中断处理,这使得CPU的内部结构复杂,并不能满足AI时代的需求。

而采用GPU并行计算的AI服务器,单卡核心数达到上千个,擅长处理密集型运算应用,如图形渲染、计算视觉和机器学习。

上述提及的检测企业使用的AI服务器,基础配置就包括8颗英伟达A100GPU和80G存储器。

AI服务器对于AI、ML和DL的计算密集型任务来说非常有用。主要功能包括:

大数据处理:AI服务器能够处理和分析大量数据,这是训练AI和ML模型的关键。

并行计算:由于AI和ML算法需要对大量数据进行复杂的计算,AI服务器通常使用可以并行处理大量数据的硬件,如GPU。

存储和内存:AI服务器通有大量的存储空间和内存,以便存储和处理大量的数据。

网络能力:AI服务器需要高速和低延迟的网络连接,以便快速传输大量的数据。

其实,这也解释了为什么在大模型热浪后,会引发AI服务器的抢购浪。大模型中包含着海量的数据参数、训练、运行都需要更多的计算资源来处理,这就需要更高性能的AI服务器来支持。

当然,这一次AI服务需求大涨最直接的原因是大模型时代的到来,但是实际上,AI服务器在这个节点爆发,与AI技术、大数据的发展都有关。

总的来说,AI服务器的爆火可以归结为以下几个关键因素。

首先,大数据的崛起。现代社会的每个角落,无论是社交媒体、电子商务还是互联网搜索,都在产生大量的数据。

这些数据需要通过复杂的算法进行分析和解读,以发现有用的模式和信息,而AI服务器就能提供足够的计算能力来处理这些任务。

其次,AI和ML的普及也推动了AI服务器的需求。AI和ML现在已经广泛应用于各种行业,包括医疗保健、金融、零售和交通等。

这些领域的进步需要强大的计算能力来处理和分析数据,训练和运行复杂的AI和ML模型。

最后,云计算和边缘计算的发展也为AI服务器的爆火提供了动力。

云计算使得企业和组织能够无需购买和维护昂贵的硬件就能获得强大的计算能力,而边缘计算则需要在接近数据产生地点的服务器上进行数据处理和分析。

AI服务器国内市场格局

AI服务器市场在过去的几年里一直在持续增长,到现今,在大模型的加持下,AI服务器市场盘子越来越大。

据北京研精毕智信息咨询发布的最新数据显示,2022年全年,全球AI服务器行业市场出货量达到85万台,同比增长约11%,到2023年中旬,AI服务器市场出货量接近60万台,相比上年同期增长约39%。

未来,随着自然语言处理和图像、视频等AI大模型的发展,算力需求的持续增长,预计到今年年底,全球AI服务器市场规模将超过200亿美元。

到2025年,预计市场出货量将提升至190万台左右,2022-2025年期间年平均增长率达41.2%。

就具体产业链来说,AI服务器产业链上游为CPU、GPU、内存和硬盘等核心零部件,以及数据库、操作系统和基础管理软件等软件供应;下游为应用市场,包括互联网、云计算和数据中心服务商等。

目前,主导市场的是一些主要的AI服务器制造商,包括华为、浪潮、联想和中科曙光等,这些公司的服务器被广泛应用于AI和ML的研究和商业应用。

不过,值得注意的是,浪潮信息于近日发布了一份营收净利润双双下滑的半年度业绩预告。

其中,浪潮信息2023年上半年扣非净利润同比下滑88%-99%。对此,浪潮信息方面称,2023年上半年,受全球GPU及相关专用芯片供应紧张等因素的影响,营业收入出现下滑。

实际上,有行业人士分析,在AI服务器大火的背景下,浪潮信息业绩不及预期,深层次原因还是在于传统服务器行业整体不景气,而目前浪潮信息AI服务器实际所占比例并不大。

浪潮信息此前曾表示,总体来看,公司AI服务器的整体业务占比在上升。AI服务器需求大涨带来的业绩,或许能在浪潮信息2023年年报才能体现。

不过,根据IDC发布的《2022年第四季度中国服务器市场跟踪报告Prelim》,目前,在整个服务器市场(涵盖AI服务器和传统服务器)浪潮份额依旧以28.1%领先,但相比于去年30.8%的份额,还是有所下滑。

其实这也与说明一点,传统CPU服务器行业受到AI的影响,市场逐渐萎靡。未来以AI服务器为代表的异构服务器或是大势所趋。

在应用市场,数据显示,全球市场中以Microsoft、Google、Meta和AWS为代表的四家北美云端供应商采购量相对比较高。

2022年末,Microsoft以接近20%的采购量占据当年首位;Google、Meta和AWS采购量占比排在之后,分别达到17%、15%和14%。

在国内,随着科技厂商入局大模型已经大模型创业的兴起,AI算力基础设施的加快建设,对AI服务器的采购量占比也在相应升高。

2022年年末,字节跳动的AI服务器采购量大幅度提高,市场占比达到6%。

然而,市场也面临着一些挑战。首先,是能源消耗的问题。尽管AI服务器的性能在不断提高,但其能耗也在增加。这对于环保和电力供应来说都是一个问题。

其次,AI和ML的快速发展和变化要求服务器制造商必须持续投入研发,以确保他们的产品能够满足最新的需求。

关于未来,国内的AI服务器市场有很大的潜力。随着AI、ML和DL的进一步发展和应用,预计对AI服务器的需求将继续增长。

此外,随着5G和物联网技术的普及,未来在边缘计算领域对AI服务器的需求将会增加。

总的来说,尽管市场面临着一些挑战,但AI服务器的快速发展和广泛应用表明,这是一个充满活力和潜力的市场。

【关于科技云报道】

专注于原创的企业级内容行家——科技云报道。成立于2015年,是前沿企业级IT领域Top10媒体。获工信部权威认可,可信云、全球云计算大会官方指定传播媒体之一。深入原创报道云计算、大数据、人工智能、区块链等领域。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/795746.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

算法(4)

字符串 给定一个数值的数组&#xff0c;要求组合最小的数值。 public String PrintMinNumber(Integer [] s) {if(snull) return null;String s1"";ArrayList<Integer> listnew ArrayList<Integer>(Arrays.asList(s)); // for(int i0;i<s.leng…

二维数组练习题-回形数

从键盘输入一个整数&#xff08;1~20&#xff09;&#xff0c;则以该数字为矩阵&#xff0c;将数字按照顺时针螺旋填入其中 package array;import java.util.Scanner;/*** author 苗晓强* date 2023/7/26 23:56* 回形数&#xff1a;* 从键盘输入一个整数&#xff08;1~20&…

从9G到0.3G,腾讯会议对他们的git库做了什么?

&#x1f449;导读 过去三年在线会议需求井喷&#xff0c;腾讯会议用户量骤增到3亿。快速迭代的背后&#xff0c;腾讯会议团队发现&#xff1a;业务保留了长达5年的历史数据&#xff0c;大量未进行 lfs 转换&#xff0c;新 clone 仓库本地空间占17.7G。本地磁盘面临严重告急&am…

FastSAM 论文解读

论文名称&#xff1a;Fast Segment Anything 论文地址&#xff1a;http://export.arxiv.org/pdf/2306.12156 代码地址&#xff1a;GitHub - CASIA-IVA-Lab/FastSAM: Fast Segment Anything 1. 关键内容 基于YOLOv8-seg实现了FastSAM&#xff0c;它比SAM快50倍&#xff0c;且…

数仓学习---15、数据仓库工作流调度

1、数据仓库工作流调度 1.1 调度工具部署 工具部署链接 1.2 新数据生成 1.2.1 用户行为日志 1、启动日志采集通道&#xff0c;包括Kafka、Flume等 &#xff08;1&#xff09;启动Zookeeper zk.sh start&#xff08;2&#xff09;启动Kafka kf.sh start&#xff08;3&…

【雕爷学编程】Arduino动手做(95)---GY9960手势传感器模块3

37款传感器与执行器的提法&#xff0c;在网络上广泛流传&#xff0c;其实Arduino能够兼容的传感器模块肯定是不止这37种的。鉴于本人手头积累了一些传感器和执行器模块&#xff0c;依照实践出真知&#xff08;一定要动手做&#xff09;的理念&#xff0c;以学习和交流为目的&am…

电容触摸屏(TP)的工艺结构

液晶显示屏(LCM),触摸屏(TP) “GG、GP、GF”这是结构分类&#xff0c;第一个字母表面材质&#xff08;又称为上层&#xff09;&#xff0c;第二个字母是触摸屏的材质&#xff08;又称为下层&#xff09;&#xff0c;两者贴合在一起。 G玻璃&#xff0c;FFILM&#xff0c;“”贴…

华为eNSP:路由引入

一、拓扑图 二、路由器的配置 1、配置路由器的IP AR1&#xff1a; [Huawei]int g0/0/0 [Huawei-GigabitEthernet0/0/0]ip add 1.1.1.1 24 [Huawei-GigabitEthernet0/0/0]qu AR2&#xff1a; [Huawei]int g0/0/0 [Huawei-GigabitEthernet0/0/0]ip add 1.1.1.2 24 [Huaw…

HarmonyOS学习路之方舟开发框架—学习ArkTS语言(状态管理 一)

状态管理概述 在前文的描述中&#xff0c;我们构建的页面多为静态界面。如果希望构建一个动态的、有交互的界面&#xff0c;就需要引入“状态”的概念。 图1 效果图 上面的示例中&#xff0c;用户与应用程序的交互触发了文本状态变更&#xff0c;状态变更引起了UI渲染&#x…

Blazor实战——Known框架多表增删改查

多表增删改查示例 本章介绍学习多张表增、删、改、查功能如何实现&#xff0c;下面以销货出库单作为示例&#xff0c;该业务栏位如下&#xff1a; 销货出库单栏位 销货单号、销货日期、状态、客户、备注 销货出库单明细栏位 商品编码、商品名称、规格型号、数量、单位、单价、…

详解rocketMq通信模块升级构想

本文从开发者的角度深入解析了基于netty的通信模块, 并通过简易扩展实现微服务化通信工具雏形, 适合于想要了解netty通信框架的使用案例, 想了解中间件通信模块设计, 以及微服务通信底层架构的同学。希望此文能给大家带来通信模块架构灵感。 概述 网络通信是很常见的需求&#…

065、故障处理之OMM_TiKV

TiKV Server OOM 对业务的影响 TiKV 上的请求失败造成异常退出region leader重新选举 raft group 开始选举新的 region leader新的region leader 上报信息给PD Server region cache频繁更新 在访问TiDB Server的region cache时&#xff0c;出现TiKV rpc相关报错后台自动进行Ba…

解放程序员,加速创新,缺少的就是一个工具而已

随着科技的不断进步和应用场景的不断扩大&#xff0c;软件开发已经成为当今世界的核心驱动力之一。 然而&#xff0c;传统的软件开发模式往往存在着繁琐的编码过程、复杂的架构设计和漫长的调试周期&#xff0c;使得程序员们难以专注于创新和高难度的研究。 很多程序员上班的时…

基于解析法和遗传算法相结合的配电网多台分布式电源降损配置(Matlab实现)

目录 1 概述 2 数学模型 2.1 问题表述 2.2 DG的最佳位置和容量&#xff08;解析法&#xff09; 2.3 使用 GA 进行最佳功率因数确定和 DG 分配 3 仿真结果与讨论 3.1 33 节点测试配电系统的仿真 3.2 69 节点测试配电系统仿真 4 结论 1 概述 为了使系统网损达到最低值&a…

一分钟学会利用GPT编写爆款标题

&#x1f3c6; 文章目标&#xff1a;学习利用GPT编写爆款标题 &#x1f340; 入门篇&#xff1a;一分钟学会利用GPT编写爆款标题 ✅ 创作者&#xff1a;熊猫Jay ✨ 个人公众号: 熊猫Jay字节之旅 (文末有链接) &#x1f341; 展望&#xff1a;若本篇讲解内容帮助到您&#xff0c…

Web网站性能压测实践 | 数据平台

一、 为什么要做压测&#xff1f; 首先解释下为什么要做性能压测&#xff1a;根据 Amazon 统计&#xff0c;每慢 100 毫秒&#xff0c;交易额下降 1%。这个统计数据为大家敲响了警钟&#xff0c;也客观说明了性能压测对于企业应用的重要性。从具体的OKR上讲&#xff0c;我们希望…

常见排序算法-Python实现

python 排序 算法 1.二分法 ​ python 32行 #codingutf-8 def binary_search(input_array, value): """Your code goes here.""" length len(input_array) left 0 right length-1 if length 1: return 0 if value input_value[0] els…

Linux 多线程并发Socket服务端的实现( 11 ) -【Linux通信架构系列 】

系列文章目录 C技能系列 Linux通信架构系列 C高性能优化编程系列 深入理解软件架构设计系列 高级C并发线程编程 设计模式系列 期待你的关注哦&#xff01;&#xff01;&#xff01; 现在的一切都是为将来的梦想编织翅膀&#xff0c;让梦想在现实中展翅高飞。 Now everythi…

3秒快速打开 jupyter notebook

利用 bat 脚本&#xff0c;实现一键打开 minconda 特点&#xff1a; 1、可指定 python 环境 2、可指定 jupyter 目录 一、配置环境 minconda 可以搭建不同的 python 环境&#xff0c;所以我们需要找到 minconda 安装目录&#xff0c;把对应目录添加到电脑环境 PATH 中&#…

prepros.crack.7.8.5 by Xacker

您友好的 Web 开发伙伴 Prepros 编译您的文件&#xff0c;转译您的 JavaScript&#xff0c;重新加载您的浏览器&#xff0c;并使开发和测试您的网站变得非常容易&#xff0c;这样您就可以专注于使它们完美。 适用于 Windows、macOS 和 Linux 试用版包括所有 Prepros 功能。 编…