【教学类-34-06】20230726拼图(“三角”凹凸拼图)3*4格子(中班主题《个别化拼图》偏美术)

news2025/1/9 16:31:57

图片展示: 

圆形凹凸角变成三角形凹凸角,便于幼儿剪直线。

 

背景需求:

5月底,我自制凹凸角拼图(动画片图片转拼图)给幼儿裁剪,拼贴

教学实际操作时,发现圆形的凸角不适合幼儿裁剪,幼儿怕剪断,都是剪成大块。为了能拼上边缘,都是老师修建圆角凹凸角。

需求:我想调整代码,把圆角变成正方角。

 结果:原作者代码复杂精细,我看不懂,只能反复调整数字,搞了两天,还是没有做出正方形凹凸角最后勉强生成“菱形凹凸角”和“三角凹凸角拼图。”

三角凹凸角拼图代码

材料准备:

 总图

这些图片必须统一是JPG格式(用格式工厂、或者代码转换一下)

 

代码展示(以2张大图为例):


'''
目的:3*4彩色拼图(有三角凹凸)
作者:阿夏
时间:2023年7月25日 15:43
'''

import os

# yangshi=float(input('输入造型数字:凹凸基础0.5(链边太细);凹凸最适宜0.56;纯方块:7\n'))
# pic_width=int(input('请输入底边像素(1024)\n'))# 长度 把MB图片缩小一点,生成的拼图块格式也小一点1024
# pic_height=int(input('请输入侧边像素(768)\n'))# 宽度768
Number=12
# int(input('多少块3*4(12块)\n'))# 宽度768
# pic_puzzle_longnum=int(input('请输入侧边的积木块数量(3)\n'))# 积木块数量4*6=12块 中的4  768
# pic_puzzle_shortnum=int(input('请输入底边的积木块数量(4)\n'))# 积木块数量4*6=12块 中的6  1024
# pic_puzzle_side_long=float(input('请输入word里面积木块图片的长度\n'))# 小拼图块的长度  1.5正方形
# pic_puzzle_side_short=float(input('请输入word里面积木块图片的宽度\n'))# 小拼图块的宽度  1.5正方形
# fenlan=int(input('请输入word里面分栏数量\n'))# 1.5  4*6时  6列

'''
A4短边 最多4格,1.7
3格 2.3
2格 3.6

拼贴后的作品只有A4一半大小

项目1:横版照片
造型:0.56凹凸,7方形
样式:4:3
像素:1024*768
格子:4*6=24块
积木块长宽:1.7*1.7
分栏:6

项目2:横版照片 16宫格照片
样式:1:1
像素:1024*1024
格子:4*4
积木块长宽:1.7*1.7
分栏:5

项目3:横版照片 9宫格照片
样式:1:1
像素:1024*1024
格子:3*3
积木块长宽:2.3*2.3
分栏:3
(比4*6图片小)

项目4:横版照片 4宫格照片
样式:1:1
像素:1024*1024
格子:2*2
积木块长宽:3.6*3.6
分栏:2
(比4*6图片小)

2张A4打印纸 
成品a4一半

项目1:横版照片
造型:0.56凹凸,7方形
样式:4:3
像素:1024*768
格子:4*6=24块
积木块长宽:2.3*2.3
分栏:4
'''


# pic=['jpg','png','tif']
# for i in pic:
#     # print(i)
#     geshi.append(i)
# print(geshi)
# bmp,jpg,png,tif,gif,pcx,tga,exif,fpx,svg,psd,
# cdr,pcd,dxf,ufo,eps,ai,raw,WMF,webp,avif,apng 等。”

#
print('----------第1步:读取总图(大图)所在的位置:-----------')

pathz=[]
prz="C:\\Users\\jg2yXRZ\\OneDrive\\桌面\\凸起图案拼图\\总图"
# 过滤:只保留png结尾的图片
imgs1z=os.listdir(prz)
for img1z in imgs1z:
    if img1z.endswith(".jpg"):
        pathz.append(prz+'\\'+img1z)
# 所有总图片(原图)的路径
print(pathz)
print(len(pathz))# 一共几张图片(2张测试)
# print(imgs1z)



print('------第2步,调整照片大小(把照片缩小格式(4:3横版、3:4竖版、1:1九宫格)这里是1024*768-------')
# 先缩小图片格式,这样导出的拼图块们的容量小一点(适合打印版本A4)
# 不用第一部分,每张拼图块图片很大,4MB照片拆分24张,每张1MB(适合电子白板教学,高清图片)
# '''作者:幸福清风https://blog.csdn.net/xun527/article/details/117085712'''

from PIL import Image
import os.path
import glob

def convertjpg(jpgfile,outdir,width=1024,height=768):      #横版本 把 16-266KB的照片转换成540*405像素,照片大小16*43KB,拆分后正好4*6一页
# def convertjpg(jpgfile,outdir,width=405,height=540):      #竖版照片 把 16-266KB的照片转换成540*405像素,照片大小16*43KB,拆分后正好4*6一页
      # 400*300宽高像素  15-24K
      # 520*390宽高像素  29-30K
# 1024,height=768  哪怕只有45K,也是格子很大
    img=Image.open(jpgfile)
    try:
        new_img=img.resize((width,height),Image.BILINEAR)
        if not os.path.exists(outdir):
            os.mkdir(outdir)
        new_img.save(os.path.join(outdir,os.path.basename(jpgfile)))
    except Exception as e:
        print(e)

print('------第3步,读取大图的位置,生成凹凸平涂------')

# '''多照片()''' 
# 读取路径下的一个文件
for w in range(len(pathz)):    # 0-2

    # # 新建一个”装N份word和PDF“的文件夹
    os.mkdir(r'C:\Users\jg2yXRZ\OneDrive\桌面\凸起图案拼图\小图{}'.format(w+1))    # 1-2

    path = '{}'.format(pathz[w])
    print(path)
    # r"C:\Users\jg2yXRZ\OneDrive\桌面\凸起图案拼图\1.jpg"# 来源

    # # 读取路径下的一个文件
    # path = r"C:\Users\jg2yXRZ\OneDrive\桌面\凸起图案拼图\1.jpg"# 来源

    # for jpgfile in glob.glob(path):
    #     convertjpg(jpgfile,r"C:\Users\jg2yXRZ\OneDrive\桌面\凸起图案拼图\小图")# 去向
    # '''# 全部照片'''
    # path = r"C:\Users\Administrator\Desktop\凸起图案拼图\原图\*.{}".format(geshi)
    # for jpgfile in glob.glob(path):
    #     convertjpg(jpgfile,r"C:\Users\Administrator\Desktop\凸起图案拼图\照片调整")


    print('------以下部分 生成带凹凸拼图-------')
    '''https://blog.csdn.net/zbbzb/article/details/120127932 作者:zbbzb'''

    # import os
    # from PIL import Image
    # # 分隔成n*m个方块
    # # 分割几行几列, 二维数组保存
    # def SplitImages(img_path, row, col):
    #     path_name = os.path.dirname(img_path)
    #     img = Image.open(img_path).convert("RGBA")
    #     imgSize = img.size

    #     splitW = int(imgSize[0]/col)
    #     splitL = int(imgSize[1]/row)

    #     pimg = img.load()

    #     imbList = []
    #     for i in range(row):
    #         rowList = []
    #         l = (i + 1) * splitL
    #         for j in range(col):
    #             w = (j + 1) * splitW
    #             imb = Image.new('RGBA', (splitW, splitL),(255,255,255,0))
    #             pimb = imb.load()

    #             for k in range(j * splitW, w):
    #                 for z in range(i * splitL, l):
    #                     pimb[k - splitW * j, z - i * splitL] = pimg[k,z]
    #             dirPath = path_name + "/" + str(i*10 + j) + ".png"
    #             # imb.save(dirPath)
    #             rowList.append(imb)
    #         imbList.append(rowList)

    #     return imbList

    

    # 最终版:随机凹凸, 考虑圆心偏移
    import os
    from PIL import Image
    import random

    # 分割几行几列, 二维数组保存
    def SplitImages(img_path, row, col):
        path_name = os.path.dirname(img_path)
        img = Image.open(img_path).convert("RGBA")
        imgSize = img.size

        splitW = int(imgSize[0]/col)
        splitL = int(imgSize[1]/row)

        pimg = img.load()

        imbList = []
        for i in range(row):
            rowList = []
            l = (i + 1) * splitL
            for j in range(col):
                w = (j + 1) * splitW
                imb = Image.new('RGBA', (splitW, splitL),(255,255,255,0))
                pimb = imb.load()

                for k in range(j * splitW, w):
                    for z in range(i * splitL, l):
                        pimb[k - splitW * j, z - i * splitL] = pimg[k,z]
                dirPath = path_name + "/" + str(i*10 + j) + ".png"
                # imb.save(dirPath)
                rowList.append(imb)
            imbList.append(rowList)

        return imbList

    def Resize(img, rizeW, rizel, pastePoint=None): 
        if pastePoint is None:
            pastePoint = [0, 0]

        new_im = Image.new('RGBA', [rizeW, rizel],(255,255,255,0))
        new_im.paste(img, pastePoint)

        return new_im

    def SplitCircle(imbList, imgPath):
        path_name = os.path.dirname(imgPath)
        img = Image.open(imgPath).convert("RGBA")
        imgSize = img.size

        col = len(imbList[0])
        row = len(imbList)

        if col == 1 and row == 1:
            return 

        splitW = int(imgSize[0]/col)
        splitL = int(imgSize[1]/row)

        minV = min(splitW, splitL)
        r_d = int(minV / 4) # 要计算 两个不能比 l 长 并且加上 offset 也不能超过 l
        r_offset = int(minV / 8)

        pSplitW = splitW + (r_d + r_offset) * 2
        pSplitL = splitL + (r_d + r_offset) * 2

        pimg = img.load()
        
        # 存(row - 1) * (col - 1) 个中心点
        pointList = []
        for i in range(row):
            colPointList = []
            for j in range(col):
                colPoint = []
                rowPoint = []
                if j != col - 1:
                    colPoint = [splitW * (j + 1), int(splitL/2) + i * splitL]
                if i != row - 1:
                    rowPoint = [int(splitW / 2) + j * splitW, splitL * (i + 1)]
                colPointList.append({'colPoint': colPoint, 'rowPoint': rowPoint})

                imbList[i][j] = Resize(imbList[i][j], pSplitW, pSplitL, [r_d + r_offset, r_d + r_offset])
                dirPath = path_name + "/" + str(i*10 + j) + ".png"
                # imbList[i][j].save(dirPath)
            pointList.append(colPointList)

        for i in range(row):
            for j in range(col):
                imbImg = imbList[i][j]
                new_img = imbImg

                # 圆心靠左 靠右, 默认靠右
                lrandNum = random.randint(0, 999999)
                drandNum = random.randint(0, 999999)
                lrRight = True
                drRight = True
            
                if lrandNum < 500000:
                    lrRight = False
                if drandNum < 500000:
                    drRight = False

                new_img_imb = new_img.load()

                if j != col - 1:

                    if lrRight :
                        new_next_img = imbList[i][j + 1]
                        new_next_img_imb = new_next_img.load()
                        # 左右
                        for k in range((j + 1) * splitW, (j + 1) * splitW + r_d + r_offset):
                            for z in range(i * splitL, (i + 1) * splitL):
                                r_w = pointList[i][j]['colPoint'][0] 
                                r_l = pointList[i][j]['colPoint'][1] 
                                r = ((pow(abs(k - r_w),1)+pow(abs(z - r_l),1)))*2
                                # 凹凸圆球的直径,作者原设置0.5,感觉三个凹型的拼图连接地方太细了,幼儿容易剪断,所以这里改成0.55
                                #  测试结果:0.3不规则矩形块(图形类似俄罗斯方块)
                                # 0.7 方块,四周 有很小的圆点(不连接) 内部有很小空心圆点(适合电子版)
                                # 0.6 方块,四周 有很大的圆点(不连接) 内部有很小空心圆点(适合电子版)
                                if r/2 < r_d:
                                    new_img_imb[k - j * splitW + r_d + r_offset, z - i * splitL + r_d + r_offset] = pimg[k, z]
                                    new_next_img_imb[k - (j + 1) * splitW + r_d + r_offset, z - i * splitL + r_d + r_offset] = (255,255,255,0)

                        imbList[i][j + 1] = new_next_img
                    else:
                        new_next_img = imbList[i][j + 1]
                        new_next_img_imb = new_next_img.load()
                        # 左右
                        for k in range((j + 1) * splitW - r_d - r_offset, (j + 1) * splitW):
                            for z in range(i * splitL, (i + 1) * splitL):
                                r_w = pointList[i][j]['colPoint'][0]
                                r_l = pointList[i][j]['colPoint'][1]
                                r = ((pow(abs(k - r_w),1)+pow(abs(z - r_l),1)))*2
                                if r/2 < r_d:
                                    new_next_img_imb[k - (j + 1) * splitW + r_d + r_offset, z - i * splitL + r_d + r_offset] = pimg[k, z]
                                    new_img_imb[k - j * splitW  + r_d + r_offset, z - i * splitL + r_d + r_offset] = (255,255,255,0)

                        imbList[i][j + 1] = new_next_img   

                if i!= row - 1:

                    if drRight:
                        new_down_img = imbList[i + 1][j]
                        new_down_img_imb = new_down_img.load()
                        # 上下
                        for k in range(j * splitW, (j + 1) * splitW):
                            for z in range((i + 1) * splitL, (i + 1) * splitL + r_d + r_offset):
                                r_w = pointList[i][j]['rowPoint'][0]
                                r_l = pointList[i][j]['rowPoint'][1] 
                                r = ((pow(abs(k - r_w),1)+pow(abs(z - r_l),1)))*2
                                if r/2 < r_d:
                                    new_img_imb[k - j * splitW + r_d + r_offset, z - i * splitL + r_d + r_offset] = pimg[k, z]
                                    new_down_img_imb[k - j * splitW + r_d + r_offset, z - (i + 1) * splitL + r_d + r_offset] = (255,255,255,0)
                
                        imbList[i + 1][j] = new_down_img
                    else:
                        new_down_img = imbList[i + 1][j]

                        new_down_img_imb = new_down_img.load()
                        # 上下
                        for k in range(j * splitW, (j + 1) * splitW):
                            for z in range((i + 1) * splitL - r_d - r_offset, (i + 1) * splitL):
                                r_w = pointList[i][j]['rowPoint'][0]
                                r_l = pointList[i][j]['rowPoint'][1] 
                                r = ((pow(abs(k - r_w),1)+pow(abs(z - r_l),1)))*2
                                if r/2 < r_d:
                                    new_down_img_imb[k - j * splitW + r_d + r_offset, z - (i + 1) * splitL + r_d + r_offset] = pimg[k, z]
                                    new_img_imb[k - j * splitW + r_d + r_offset, z - i * splitL + r_d + r_offset] = (255,255,255,0)

                        imbList[i + 1][j] = new_down_img
            
                imbList[i][j] = new_img
        # n=[]    
        # for  i  in range (0,row*col):
        #     n.append(i)
        # print(n)
        print('----把每张图片的12份小图放入一个文件夹小图(每张大图生成一个文件夹)----')
        for i in range(0,row):        # 3
            for j in range(0,col):     # 4
                n=3*4
                dirPath = r"C:/Users/jg2yXRZ/OneDrive/桌面/凸起图案拼图" + "/小图{}/{}.png".format(w+1,'%02d'%(i*4 + j) )
                # 在路径下的“拼图”文件夹下
                #
                imbList[i][j].save(dirPath)


    if __name__ == '__main__':
        # dirPath =r"C:/Users/jg2yXRZ/OneDrive/桌面/凸起图案拼图/小图/"
        
        SplitCircle(SplitImages(pathz[w], 3,4), pathz[w])
        # SplitCircle(SplitImages(pathz[w], pic_puzzle_longnum, pic_puzzle_shortnum) , pathz[w])
        # 横版高4长6
        # 第一个数字是高度4张图片  第二个数字是宽度3张
# '''
# 71.8KB的图片4*6 24张3*8摆放在word 上下左右 1 1 1 1

print('-----第4步:拼图块导入docx打印-----')

print('----------4-1:新建一个临时文件夹------------')
# 新建一个”装N份word和PDF“的文件夹
os.mkdir(r'C:\Users\jg2yXRZ\OneDrive\桌面\凸起图案拼图\零时Word')


print('---提取小图片路径------------')

path=[]
for r in range(len(pathz)):
    pr="C:\\Users\\jg2yXRZ\\OneDrive\\桌面\\凸起图案拼图\\小图{}".format(r+1)
    # 过滤:只保留png结尾的图片
    imgs1=os.listdir(pr)
    for img1 in imgs1:
        if img1.endswith(".png"):
            path.append(pr+'\\'+img1)
    # 所有图片的路径
print(path)
print(len(path))
# 216条路径(18张*12图)
# print(imgs1)

print('----------第3步:随机抽取9张图片 ------------')

import docx
from docx import Document
from docx.shared import Pt 
from docx.shared import RGBColor
from docx.enum.text import WD_PARAGRAPH_ALIGNMENT
from docx.oxml.ns import qn
import random

import os,time
import docx
from docx import Document
from docx.shared import Inches,Cm,Pt
from docx.shared import RGBColor
from docx.enum.text import WD_PARAGRAPH_ALIGNMENT
from docx.oxml.ns import qn

from docxtpl import DocxTemplate
import pandas as pd
from docx2pdf import convert
from docx.shared import RGBColor


for nn in range(0,len(pathz)):    #28/2 0-14
    
    doc = Document(r'C:\Users\jg2yXRZ\OneDrive\桌面\凸起图案拼图\长方形模板.docx')
#     # 制作列表    
    
    # 从左边图列表和右边图列表中抽取图片(12张图片,可能5个向左、7个向右边)
    # 24条里面0和12条是一组,2个里面随机抽1一个,1和13是一组,2个里面随机抽一个…… 抽出12个图片后

    r=[]    
    c=[]
    r.append(path[nn*12:nn*12+12])        # 左侧第一份,
    
    # r.append(path[nn*24:nn*24+24])        # 连续12张图片、2份字母插入同一份A4
    
    # print(r)
    # 再打乱顺序读取12个      
    for a in r:
        for b in a:
            c.append(b)
    print(c)    
    
    figures=random.sample(c[0:12],Number)    # 前9张不重复打乱     
    # figures2=random.sample(c[4:8],Number)    # 后9张不重复打乱
    # figures3=random.sample(c[12:18],Number)    # 后6张不重复打乱
    # figures4=random.sample(c[18:24],Number)    # 后6张不重复打乱
    
    # 9+9张不重复打乱图片合并
    # figures=figures1+figures2
    # figures=figures1+figures2+figures3+figures4
    print(figures)

    # # 每2个学号一组的列表 m名字里面的前两个数字(学号)
    # name2=name[nn*2:nn*2+2]
#     print(name2)

    # for z in range(2):        # 5行组合循环2次 每页两张表
              

    # 单元格位置3*3格
    bg=[]
    # 前1+3+1行不要写入 从4动
    for x in range(0,3):        # 3行 索引1行2行3行
        for y in range(0,4):    # 3列 索引0列1列2列
                ww='{}{}'.format(x,y)
                bg.append(ww)
    print(bg) 

    table = doc.tables[0]          

    for t in range(len(bg)):   # 02
        pp=int(bg[t][0:1])    
        qq=int(bg[t][1:2])  
        # print(p)               
        k=figures[t]         

        print(pp,qq,k)

        # 写入图片
        run=doc.tables[0].cell(pp,qq).paragraphs[0].add_run()        # 在第1个表格中第2个单元格内插入国旗
        run.add_picture('{}'.format(k),width=Cm(6.05),height=Cm(6.05))
        # 单元格宽度6.15   6.15
        table.cell(pp,qq).paragraphs[0].alignment = WD_PARAGRAPH_ALIGNMENT.LEFT #居中 
    
#         # 姓氏描画文字
#         title=[]
#         for t in range(4):
#             title.append(name2[z][0])
#         print(title)

#         wz=[]
#         # 前1+3+1行不要写入 从4动
#         for x1 in range(0,3):        # 3行 索引1行2行3行
#             for y1 in range(0,4):    # 3列 索引0列1列2列
#                     ww='{}{}'.format(x1,y1)
#                     wz.append(ww)
#         print(wz)           
            
        
    doc.save(r'C:\Users\jg2yXRZ\OneDrive\桌面\凸起图案拼图\零时Word\{}.docx'.format('%02d'%nn))   
    from docx2pdf import convert

    # docx 文件另存为PDF文件
    inputFile = r"C:/Users/jg2yXRZ/OneDrive/桌面/凸起图案拼图/零时Word/{}.docx".format('%02d'%nn)  # 要转换的文件:已存在
    outputFile = r"C:/Users/jg2yXRZ/OneDrive/桌面/凸起图案拼图/零时Word/{}.pdf".format('%02d'%nn)  # 要生成的文件:不存在
    # 先创建 不存在的 文件
    f1 = open(outputFile, 'w')
    f1.close()
    # 再转换往PDF中写入内容
    convert(inputFile, outputFile)
    
print('----------第4步:把都有PDF合并为一个打印用PDF------------')
    
# 多个PDF合并(CSDN博主「红色小小螃蟹」,https://blog.csdn.net/yangcunbiao/article/details/125248205)
import os
from PyPDF2 import PdfFileMerger
target_path =  'C:/Users/jg2yXRZ/OneDrive/桌面/凸起图案拼图/零时Word'
pdf_lst = [f for f in os.listdir(target_path) if f.endswith('.pdf')]
pdf_lst = [os.path.join(target_path, filename) for filename in pdf_lst]
pdf_lst.sort()
file_merger = PdfFileMerger()
for pdf in pdf_lst:
    print(pdf)
    file_merger.append(pdf)
file_merger.write("C:/Users/jg2yXRZ/OneDrive/桌面/凸起图案拼图/(打印合集)三角凹凸图案拼图A4一页一份(3乘4).pdf")
file_merger.close()
# doc.Close()

# # # print('----------第5步:删除临时文件夹------------')    
import shutil
shutil.rmtree('C:/Users/jg2yXRZ/OneDrive/桌面/凸起图案拼图/零时Word') #递归删除文件夹,即:删除非空文件夹

for i in range(len(pathz)):    
    shutil.rmtree('C:/Users/jg2yXRZ/OneDrive/桌面/凸起图案拼图/小图{}'.format(i+1)) #递归删除文件夹,即:删除非空文件夹

运行代码

直接运行,不需要代码

 

 重点解析:

1、读取总图里面的两张图片的路径

 2、无论图片大小,都改成1024*720(下载图片像素过大或过小)

 3、新建存放每张图片的12张小图的单一文件夹。“1.JPG的小图”放入“小图1”文件夹

  

4、圆形凹凸角变成三角形凹凸角的参数调整

(所有的r修改,所有r_w、r_l后面都不要+r_offset -r_offset、所有的if r< r_d改成f r/2< r_d)

就是能出效果,原理不理解。

作品展示:

 

 

视频gif展示:12张图片

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/791734.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

ROS 2 — 托管(生命周期)节点简介

一、说明 这篇文章是关于理解ROS 2中托管&#xff08;生命周期&#xff09;节点的概念。我们描述了概念性的想法以及我们为什么需要它。所以让我们开始吧&#xff01; 二、托管式节点 — 什么和为什么&#xff1f; 为了理解托管式节点&#xff0c;让我们从一个简单的问题陈述开…

微服务——服务异步通讯RabbitMQ

前置文章 消息队列——RabbitMQ基本概念容器化部署和简单工作模式程序_北岭山脚鼠鼠的博客-CSDN博客 消息队列——rabbitmq的不同工作模式_北岭山脚鼠鼠的博客-CSDN博客 消息队列——spring和springboot整合rabbitmq_北岭山脚鼠鼠的博客-CSDN博客 目录 Work queues 工作队列…

数据结构(c++实现)

数据结构 目录 数据结构1.链表实现单链表双链表 2.栈(先进后出&#xff0c;后进先出)3.单调栈4.队列&#xff08;先进先出&#xff09;5.单调队列6.小根堆操作 7.KMP8.Trie树(字典树) 1.链表实现 单链表 #include <iostream>using namespace std;const int N 100010;/…

AcWing 3708. 求矩阵的鞍点

输入样例&#xff1a; 3 4 1 2 3 4 1 2 3 4 1 2 3 4输出样例&#xff1a; 1 4 4 2 4 4 3 4 4 #include<bits/stdc.h> using namespace std; const int N1010; int n,m,a[N][N],x[N],y[N],flag1; int main(){scanf("%d%d",&n,&m);for(int i1;i<n;i…

抖音西瓜实时作品监控,一秒更新提醒

抖音西瓜实时作品监控&#xff0c;一秒更新提醒 安装必要的依赖库&#xff1a;使用pip安装aweme库。 pip install aweme 导入所需的库。 import datetime import time import schedule from aweme import API 创建一个函数&#xff0c;用于检查抖音作品是否更新。 def check_u…

端到端的视频编码方法及码率控制算法

文章目录 基于卷积神经网络的的端到端的视频编码方法自编码器 基于端到端学习的图像编码研究及进展变换量化熵编码 面向视频会议场景的 H.266/VVC 码率控制算法研究基于强化学习的视频码率自适应决策研究自适应流媒体传输技术码率自适应算法研究现状强化学习深度强化学习算法介…

mp4视频太大怎么压缩?教你轻松减小视频大小

MP4视频太大怎么办&#xff1f;很多人都会遇到这样的问题&#xff0c;MP4视频往因为画面清晰度高&#xff0c;画面流畅&#xff0c;所以视频文件会比较大&#xff0c;如果你想向朋友或者家人分享这个视频&#xff0c;但是又因为文件太大无法发送&#xff0c;那么怎么办呢&#…

可视化开发工具:让软件应用开发变得更轻松

一、前言 你是否为编程世界的各种挑战感到头痛&#xff1f;想要以更高效、简单的方式开发出专业级的项目&#xff1f; JNPF低代码工具正是你苦心寻找的产品&#xff01;它是一款专为稍微懂一点点编程思想的入门级人员设计的神奇工具&#xff0c;集成了丰富的功能和组件&#xf…

使用 CSS 自定义属性

我们常见的网站日夜间模式的变化&#xff0c;其实用到了 css 自定义属性。 CSS 自定义属性&#xff08;也称为 CSS 变量&#xff09;是一种在 CSS 中预定义和使用的变量。它们提供了一种简洁和灵活的方式来通过多个 CSS 规则共享相同的值&#xff0c;使得样式更易于维护和修改。…

深度剖析APP开发中的UI/UX设计

作为一个 UI/UX设计师&#xff0c;除了要关注 UI/UX设计之外&#xff0c;还要掌握移动开发知识&#xff0c;同时在日常工作中也需要对用户体验有一定的认知&#xff0c;在本次分享中&#xff0c;笔者就针对自己在工作中积累的一些经验来进行一个总结&#xff0c;希望能够帮助到…

暑假学生使用什么牌子台灯好?分享五款学生使用的台灯

临近暑假&#xff0c;是不是开始补课或写暑假作业了呢&#xff1f;是不是还在为选一款学生使用的台灯而发愁&#xff1f;今天小编就来给大家推荐几款台灯供大家参考参考。 那么问题来了&#xff0c;怎么选择合适的护眼台灯&#xff1f; 第一&#xff1a;先考虑个人预算选择适…

Modbus RTU通信应用

一、功能概述 1.1 概述 Modbus串行通信协议是Modicon公司在1970年开发的。 Modbus串行通信协议有Modbus ASCII和Modbus RTU两种模式&#xff0c;Modbus RTU协议通信效率较高&#xff0c;应用更加广泛。 Modbus RTU协议是基于RS232和RS485串行通信的一种协议&#xff0c;数据通…

论文解读|用于从RGB-D数据进行3D物体检测的Frustum PointNets

原创 | 文 BFT机器人 01 摘要 论文研究了室内和室外场景中基于RGBD数据的3D目标检测。论文的方法不仅仅依赖于3D方案&#xff0c;而是利用成熟的2D对象检测器和先进的3D深度学习进行对象定位&#xff0c;即使是小对象也能实现高效率和高召回。 直接在原始点云中学习&#xff0…

如何让GPT自己命令自己?榨干最后一丝智能,解放双手!

1.让GPT先别说话 2.接下来&#xff0c;看看它学的怎么样 使用成功了&#xff01;效果拔群&#xff01; 3.接下来&#xff0c;让他回答自己生成的指令&#xff1a; 效果比想象的还要好&#xff01;果然最懂GPT的还是它自己&#xff0c;生成的prompt比自己手写的prompt更加精准有…

rocketmq客户端本地日志文件过大调整配置(导致pod缓存cache过高)

现象 在使用rocketmq时&#xff0c;发现本地项目中文件越来越大&#xff0c;查找发现在/home/root/logs/rocketmqlog目录下存在大量rocketmq_client.log日志文件。 配置调整 开启slf4j日志模式&#xff0c;在项目启动项中增加-Drocketmq.client.logUseSlf4jtrue因为配置使用的…

Bug管理规范

目录 1.目的 2.角色和职责 3.缺陷等级定义 4.缺陷提交原则 5.缺陷流转流程 5.1创建缺陷 5.2缺陷分拣/分配 5.3研发认领缺陷 5.4.研发解决缺陷 5.5关闭缺陷 5.6缺陷激活 1.目的 项目过程中对缺陷管理的规则&#xff0c;明确提单规范、用例优先级的选择规则、走单流程、…

为Android构建现代应用——应用架构

选择风格(Choosing a style) 我们将依照Google在《应用架构指南》中推荐的最佳实践和架构指南来构建OrderNow的架构。 这些定义包括通过各层定义组件的一些Clean Architecture原则。 层次的定义(Definition of the layers) 在应用程序中&#xff0c;我们将定义以下主要层次…

【C++ 进阶】继承

一.继承的定义格式 基类又叫父类&#xff0c;派生类又叫子类&#xff1b; 二.继承方式 继承方式分为三种&#xff1a; 1.public继承 2.protected继承 3.private继承 基类成员与继承方式的关系共有9种&#xff0c;见下表&#xff1a; 虽然说是有9种&#xff0c;但其实最常用的还…

【教学类-34-07】20230726拼图(“菱形”凹凸拼图)3*4格子(中班主题《个别化拼图》偏美术)

作品展示&#xff1a; 背景需求 我尝试将拼图的“圆形凹凸角”变成"正方形凹凸角”&#xff0c;没有成功&#xff0c;但做出了“菱形凹凸角”。 实用性思考&#xff1a; 1、这种菱形凹凸角与正方形结构近似&#xff0c;裁剪难度中等&#xff08;比圆角容易剪&#xff0…

Android Studio Giraffe 发布,快来看有什么更新吧

又双叒叕到了「激动人心」 的 Android Studio 更新&#xff0c;这次更新的版本是 Giraffe | 2022.3.1&#xff0c;本次更新的 Giraffe&#xff08;长颈鹿&#xff09;将 IntelliJ 平台升级到 2022.3 版本&#xff0c;也将 AGP 支持提高到 8.1 &#xff0c;虽然最低支持 3.2&…