基于MOT数据集的高精度行人检测系统(PyTorch+Pyside6+YOLOv5模型)

news2024/11/18 15:30:24

摘要:基于MOT数据集的高精度行人检测系统可用于日常生活中检测与定位行人目标,利用深度学习算法可实现图片、视频、摄像头等方式的行人目标检测识别,另外支持结果可视化与图片或视频检测结果的导出。本系统采用YOLOv5目标检测模型训练数据集,使用Pysdie6库来搭建页面展示系统,同时支持ONNX、PT等模型作为权重模型的输出。本系统支持的功能包括训练模型的导入、初始化;置信分与IOU阈值的调节、图像上传、检测、可视化结果展示、结果导出与结束检测;视频的上传、检测、可视化结果展示、结果导出与结束检测;摄像头的上传、检测、可视化结果展示与结束检测;已检测目标列表、位置信息;前向推理用时。另外本行人检测系统同时支持原始图像与检测结果图像的同时展示,原始视频与检测结果视频的同时展示。本博文提供了完整的Python代码和使用教程,适合新入门的朋友参考,完整代码资源文件请转至文末的下载链接。
在这里插入图片描述

基本介绍

近年来,机器学习和深度学习取得了较大的发展,深度学习方法在检测精度和速度方面与传统方法相比表现出更良好的性能。YOLOv5是单阶段目标检测算法YOLO的第五代,根据实验得出结论,其在速度与准确性能方面都有了明显提升,开源的代码可见https://github.com/ultralytics/yolov5。因此本博文利用YOLOv5检测算法实现一种高精度行人检测模型,再搭配上Pyside6库写出界面系统,完成目标检测识别页面的开发。注意到YOLO系列算法的最新进展已有YOLOv6、YOLOv7、YOLOv8等算法,将本系统中检测算法替换为最新算法的代码也将在后面发布,欢迎关注收藏。

环境搭建

(1)下载完整文件到自己电脑上,然后使用cmd打开到文件目录
(2)利用Conda创建环境(Anacodna),conda create -n yolo5 python=3.8 然后安装torch和torchvision(pip install torch1.10.0+cu113 torchvision0.11.0+cu113 -f https://download.pytorch.org/whl/torch_stable.html -i https://pypi.tuna.tsinghua.edu.cn/simple)其中-i https://pypi.tuna.tsinghua.edu.cn/simple代表使用清华源,这行命令要求nvidia-smi显示的CUDA版本>=11.3,最后安装剩余依赖包使用:pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
在这里插入图片描述
在这里插入图片描述

(3)安装Pyside6库 pip install pyside6==6.3 -i https://pypi.tuna.tsinghua.edu.cn/simple
在这里插入图片描述

(4)对于windows系统下的pycocotools库的安装:pip install pycocotools-windows -i https://pypi.tuna.tsinghua.edu.cn/simple

界面及功能展示

下面给出本博文设计的软件界面,整体界面简洁大方,大体功能包括训练模型的导入、初始化;置信分与IOU阈值的调节、图像上传、检测、可视化结果展示、结果导出与结束检测;视频的上传、检测、可视化结果展示、结果导出与结束检测;已检测目标列表、位置信息;前向推理用时。希望大家可以喜欢,初始界面如下图:
在这里插入图片描述

模型选择与初始化

用户可以点击模型权重选择按钮上传训练好的模型权重,训练权重格式可为.pt、.onnx以及。engine等,之后再点击模型权重初始化按钮可实现已选择模型初始化信息的设置。

在这里插入图片描述
在这里插入图片描述

置信分与IOU的改变

在Confidence或IOU下方的输入框中改变值即可同步改变滑动条的进度,同时改变滑动条的进度值也可同步改变输入框的值;Confidence或IOU值的改变将同步到模型里的配置,将改变检测置信度阈值与IOU阈值。

图像选择、检测与导出

用户可以点击选择图像按钮上传单张图片进行检测与识别。
在这里插入图片描述

再点击图像检测按钮可完成输入图像的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

再点击检测结果展示按钮可在系统左下方显示输入图像检测的结果,系统将显示识别出图片中的目标的类别、位置和置信度信息。
在这里插入图片描述

点击图像检测结果导出按钮即可导出检测后的图像,在保存栏里输入保存的图片名称及后缀即可实现检测结果图像的保存。
在这里插入图片描述

点击结束图像检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频按钮来上传图像或视频。

视频选择、检测与导出

用户可以点击选择视频按钮上传视频进行检测与识别,之后系统会将视频的第一帧输入到系统界面的左上方显示。
在这里插入图片描述

再点击视频检测按钮可完成输入视频的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

点击暂停视频检测按钮即可实现输入视频的暂停,此时按钮变为继续视频检测,输入视频帧与帧检测结果会保留在系统界面,可点击下拉目标框选择已检测目标的坐标位置信息,再点击继续视频检测按钮即可实现输入视频的检测。
点击视频检测结果导出按钮即可导出检测后的视频,在保存栏里输入保存的图片名称及后缀即可实现检测结果视频的保存。
在这里插入图片描述

点击结束视频检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频按钮来上传图像或视频。

摄像头打开、检测与结束

用户可以点击打开摄像头按钮来打开摄像头设备进行检测与识别,之后系统会将摄像头图像输入到系统界面的左上方显示。
在这里插入图片描述

再点击摄像头检测按钮可完成输入摄像头的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

点击结束视频检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频或打开摄像按钮来上传图像、视频或打开摄像头。

算法原理介绍

本系统采用了基于深度学习的单阶段目标检测算法YOLOv5,相比于YOLOv3和YOLOv4,YOLOv5在检测精度和速度上都有很大的提升。YOLOv5算法的核心思想是将目标检测问题转化为一个回归问题,通过直接预测物体中心点的坐标来代替Anchor框。此外,YOLOv5使用SPP(Spatial Pyramid Pooling)的特征提取方法,这种方法可以在不增加计算量的情况下,有效地提取多尺度特征,提高检测性能。YOLOv5s模型的整体结构如下图所示。
在这里插入图片描述

YOLOv5网络结构是由Input、Backbone、Neck、Prediction组成。YOLOv5的Input部分是网络的输入端,采用Mosaic数据增强方式,对输入数据随机裁剪,然后进行拼接。Backbone是YOLOv5提取特征的网络部分,特征提取能力直接影响整个网络性能。在特征提取阶段,YOLOv5使用CSPNet(Cross Stage Partial Network)结构,它将输入特征图分为两部分,一部分通过一系列卷积层进行处理,另一部分直接进行下采样,最后将这两部分特征图进行融合。这种设计使得网络具有更强的非线性表达能力,可以更好地处理目标检测任务中的复杂背景和多样化物体。在Neck阶段使用连续的卷积核C3结构块融合特征图。在Prediction阶段,模型使用结果特征图预测目标的中心坐标与尺寸信息。博主觉得YOLOv5不失为一种目标检测的高性能解决方案,能够以较高的准确率对目标进行分类与定位。当然现在YOLOv6、YOLOv7、YOLOv8等算法也在不断提出和改进,后续博主也会将这些算法融入到本系统中,敬请期待。

数据集介绍

本系统使用的MOT20行人检测数据集标注了行人这一个类别,数据集总计14410张图片。该数据集中类别都有大量的旋转和不同的光照条件,有助于训练出更加鲁棒的检测模型。本文实验的行人检测检测识别数据集包含训练集8050张图片,验证集881张图片,测试集4479张图片,选取部分数据部分样本数据集如下图所示。由于YOLOv5算法对输入图片大小有限制,需要将所有图片调整为相同的大小。为了在不影响检测精度的情况下尽可能减小图片的失真,我们将所有图片调整为640x640的大小,并保持原有的宽高比例。此外,为了增强模型的泛化能力和鲁棒性,我们还使用了数据增强技术,包括随机旋转、缩放、裁剪和颜色变换等,以扩充数据集并减少过拟合风险。
在这里插入图片描述

关键代码解析

本系统的深度学习模型使用PyTorch实现,基于YOLOv5算法进行目标检测。在训练阶段,我们使用了预训练模型作为初始模型进行训练,然后通过多次迭代优化网络参数,以达到更好的检测性能。在训练过程中,我们采用了学习率衰减和数据增强等技术,以增强模型的泛化能力和鲁棒性。
在测试阶段,我们使用了训练好的模型来对新的图片和视频进行检测。通过设置阈值,将置信度低于阈值的检测框过滤掉,最终得到检测结果。同时,我们还可以将检测结果保存为图片或视频格式,以便进行后续分析和应用。本系统基于YOLOv5算法,使用PyTorch实现。代码中用到的主要库包括PyTorch、NumPy、OpenCV、PyQt等。
在这里插入图片描述
在这里插入图片描述

Pyside6界面设计

Pyside6是Python语言的GUI编程解决方案之一,可以快速地为Python程序创建GUI应用。在本博文中,我们使用Pyside6库创建一个图形化界面,为用户提供简单易用的交互界面,实现用户选择图片、视频进行目标检测。
我们使用Qt Designer设计图形界面,然后使用Pyside6将设计好的UI文件转换为Python代码。图形界面中包含多个UI控件,例如:标签、按钮、文本框、多选框等。通过Pyside6中的信号槽机制,可以使得UI控件与程序逻辑代码相互连接。

实验结果与分析

在实验结果与分析部分,我们使用精度和召回率等指标来评估模型的性能,还通过损失曲线和PR曲线来分析训练过程。在训练阶段,我们使用了前面介绍的行人检测数据集进行训练,使用了YOLOv5算法对数据集训练,总计训练了300个epochs。在训练过程中,我们使用tensorboard记录了模型在训练集和验证集上的损失曲线。从下图可以看出,随着训练次数的增加,模型的训练损失和验证损失都逐渐降低,说明模型不断地学习到更加精准的特征。在训练结束后,我们使用模型在数据集的验证集上进行了评估,得到了以下结果。
在这里插入图片描述

下图展示了我们训练的YOLOv5模型在验证集上的PR曲线,从图中可以看出,模型取得了较高的召回率和精确率,整体表现良好。
在这里插入图片描述

下图展示了本博文在使用YOLOv5模型对行人检测数据集进行训练时候的Mosaic数据增强图像。
在这里插入图片描述
在这里插入图片描述

综上,本博文训练得到的YOLOv5模型在数据集上表现良好,具有较高的检测精度和鲁棒性,可以在实际场景中应用。另外本博主对整个系统进行了详细测试,最终开发出一版流畅的高精度目标检测系统界面,就是本博文演示部分的展示,完整的UI界面、测试图片视频、代码文件等均已打包上传,感兴趣的朋友可以关注我私信获取。

其他基于深度学习的目标检测系统如西红柿、猫狗、山羊、野生目标、烟头、二维码、头盔、交警、野生动物、野外烟雾、人体摔倒识别、红外行人、家禽猪、苹果、推土机、蜜蜂、打电话、鸽子、足球、奶牛、人脸口罩、安全背心、烟雾检测系统等有需要的朋友关注我,从博主其他视频中获取下载链接。

完整项目目录如下所示:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/788635.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

react native 本地存储 AsyncStorage

An asynchronous, unencrypted, persistent, key-value storage system for React Native. Async Storage 只能用来储存字符串数据,所以为了去储存object类型的数据,得先进行序列化(JSON.stringify())当你想要使用数据的时候&…

redis(9):spring里面使用redis

1 创建一个mave项目 自行创建一个maven项目 2 修改pom.xml <properties><project.build.sourceEncoding>UTF-8</project.build.sourceEncoding><maven.compiler.source>1.7</maven.compiler.source><maven.compiler.target>1.7</maven…

Python电商爬虫保姆级入门教程(纯新手向)

图灵Python课堂 长沙图灵教育于2001年开始进入教育行业&#xff0c;立足泛IT类职业教育&#xff0c;以打造高新技术人才为宗旨&#xff0c;专注于提供多层次、个性化的职业技能培训课程&#xff0c;为各行业培养技术开发、应用和管理等岗位的中高端人才&#xff0c;致力于成为…

vue全局状态管理工具 Pinia 的使用

先了解一下关于Pinia的一些故事&#xff0c;面试把这些讲给面试官挺加分的&#xff0c;同时这是我持续学习下去的动力 1.为什么叫Pinia&#xff1f; 官网解释是西班牙语中的 pineapple&#xff0c;即“菠萝”&#xff0c;菠萝花是一组各自独立的花朵&#xff0c;它们结合在一起…

王道考研数据结构--4.1.顺序队列

目录 前言 1.顺序队列的定义 2. 顺序队列的结构 3.顺序队列的操作 3.1定义顺序队列 3.2初始化 3.3入队 3.4出队 3.5遍历求表长 3.6清空&#xff0c;销毁队列 4.完整代码 前言 日期&#xff1a;2023.7.25 书籍&#xff1a;2024年数据结构考研复习指导&#xff08;王道…

从小白到大神之路之学习运维第67天-------Tomcat应用服务 WEB服务

第三阶段基础 时 间&#xff1a;2023年7月25日 参加人&#xff1a;全班人员 内 容&#xff1a; Tomcat应用服务 WEB服务 目录 一、中间件产品介绍 二、Tomcat软件简介 三、Tomcat应用场景 四、安装配置Tomcat 五、配置目录及文件说明 &#xff08;一&#xff09;to…

pcie

pcie有两层意思&#xff1a;一层是总线&#xff0c;一层是接口。 下面说的是pcie接口&#xff0c;也就是插槽 一、PCI-E插槽有何作用&#xff1f; 作用是连接显卡、独立声卡、独立网卡、USB 3.0/3.1接口扩展卡、RAID阵列卡、PCI-E SSD等设备。 二、PCI-E插槽分类 PCI-E x1/x2…

ansible自动化运维

&#x1f618;作者简介&#xff1a;正在努力的99年公司职员。 &#x1f44a;宣言&#xff1a;人生就是B&#xff08;birth&#xff09;和D&#xff08;death&#xff09;之间的C&#xff08;choise&#xff09;&#xff0c;做好每一个选择。 &#x1f64f;创作不易&#xff0c;…

加速生成nlp分类任务的数据(voc t voc)

例如 ABCD 生成A01B B01C A02C A03D。。。。。。。。。 from multiprocessing import Process, Manager, freeze_supportdef gen_data(i,d,d_list,data):for j,dj in enumerate(data[i1:]):# print(d,str(j1).zfill(15),dj)d_list.append([d,str(j1),dj])if __name__ __main…

STM32MP157驱动开发——按键驱动(休眠与唤醒)

文章目录 “休眠-唤醒”机制&#xff1a;APP执行过程内核函数休眠函数唤醒函数 休眠与唤醒方式的按键驱动程序(stm32mp157)驱动程序框架button_test.cgpio_key_drv.cMakefile修改设备树文件编译测试 “休眠-唤醒”机制&#xff1a; 当应用程序必须等待某个事件发生&#xff0c…

docker - 学习笔记

一、简介 1.1 相关地址 Docker是基于Go语言开发的官网&#xff1a;https://www.docker.com/官方文档&#xff1a;https://docs.docker.com/仓库地址&#xff1a;https://hub.docker.com/ 1.2 虚拟化技术和容器化技术对比 1.2.1 虚拟化技术的缺点 资源占用十分多冗余步骤多启…

vue 中断请求

1 背景&#xff1a;针对一些请求时间较长&#xff0c;组件销毁后即中断请求&#xff1b; 2 方法&#xff1a; data(){return {//用于取消请求abortController:new AbortController(), } }, created(){//请求接口this.groundAcquisition(); }, beforeDestroy(){//中断请求this.…

网安高级笔记1

html实体编码 HTML实体编码&#xff0c;格式 以&符号开头&#xff0c;以;分号结尾的 HTML 中的预留字符必须被替换为字符实体 在 HTML 中不能使用小于号&#xff08;<&#xff09;和大于号&#xff08;>&#xff09;&#xff0c;这是因为浏览器会误认为它们是…

Python内置函数系统学习(2)——数据转换与计算(详细语法参考 + 参数说明 + 具体示例),详解max()函数实例 | 编程实现当前内存使用情况的监控

才识是岁月的冠冕&#xff0c;正如思念是我们共同的时光。 【Neo4j Python】基于知识图谱的电影问答系统&#xff08;含问题记录与解决&#xff09;附&#xff1a;源代码&#xff08;含Bug解决&#xff09;【Neo4j 知识图谱】图形化数据库基本操作: 创建节点与关系、添加属性…

了解Unity编辑器之组件篇Scripts(六)

Scripts&#xff1a;有Unity提供的一些脚本插件&#xff08;自己新建的脚本也会出现在里面&#xff09; 一、TMPro&#xff1a;有一些与文字显示和排版相关的脚本 1.TextContainer&#xff08;文本容器&#xff09;&#xff1a;TextContainer 是一个内容框&#xff0c;用于定…

5分钟掌握接口自动化测试,4个知识点简单易学!

一. 什么是接口测试 接口测试是一种软件测试方法&#xff0c;用于验证不同软件组件之间的通信接口是否按预期工作。在接口测试中&#xff0c;测试人员会发送请求并检查接收到的响应&#xff0c;以确保接口在不同场景下都能正常工作。 就工具而言&#xff0c;常见的测试工具有…

代码随想录-108-背包问题

目录 前言思路3. 算法实现4. 算法坑点 前言 我在刷卡哥的“代码随想录”&#xff0c;自己的总结笔记均会放在“算法刷题-代码随想录”该专栏下。 代码随想录此题链接 思路 前提&#xff0c;当前的物品有i1个&#xff0c;编号为0~i&#xff0c;重量weight和价值value数组如下…

FreeRTOS(软件定时器)

一、什么是定时器 简单可以理解为闹钟&#xff0c;到达指定一段时间后&#xff0c;就会响铃。 STM32 芯片自带硬件定时器&#xff0c;精度较高&#xff0c;达到定时时间后会触发中断&#xff0c;也可以生成 PWM 、输入 捕获、输出比较&#xff0c;等等&#xff0c;功能强大&am…

springMVC--中文乱码处理(新思路--化繁为简)

文章目录 springMVC--中文乱码处理(新思路--化繁为简)编码过滤器自定义中文乱码过滤器举例应用实例1. 创建过滤器springmvc\src\com\web\filter\MyCharacterFilter.java实现思路 2. 配置web.xml完成测试 Spring MVC--过滤器处理中文修改web.xml完成测试 springMVC–中文乱码处理…

Go语言导入本地文件包

Go语言导入本地文件包 ​ 在Go程序中&#xff0c;每一个包通过称为**导入路径&#xff08;import path&#xff09;**的唯一字符串来标识。它们出现在import声明中&#xff0c; 一个导入路径标注一个目录&#xff0c;目录中包含构成包的一个或多个Go源文件。 举例&#xff1a;…