Kubernetes.Service—使用源 IP

news2024/11/25 1:27:32

使用源 IP

运行在 Kubernetes 集群中的应用程序通过 Service 抽象发现彼此并相互通信,它们也用 Service 与外部世界通信。 本文解释了发送到不同类型 Service 的数据包的源 IP 会发生什么情况,以及如何根据需要切换此行为。

准备开始

术语表

本文使用了下列术语:

NAT网络地址转换Source NAT替换数据包上的源 IP;在本页面中,这通常意味着替换为节点的 IP 地址Destination NAT替换数据包上的目标 IP;在本页面中,这通常意味着替换为 Pod 的 IP 地址VIP一个虚拟 IP 地址,例如分配给 Kubernetes 中每个 Service 的 IP 地址Kube-proxy一个网络守护程序,在每个节点上协调 Service VIP 管理

先决条件

你必须拥有一个 Kubernetes 的集群,同时你必须配置 kubectl 命令行工具与你的集群通信。 建议在至少有两个不作为控制平面主机的节点的集群上运行本教程。 如果你还没有集群,你可以通过 Minikube 构建一个你自己的集群,或者你可以使用下面的 Kubernetes 练习环境之一:

  • Killercoda
  • 玩转 Kubernetes

示例使用一个小型 nginx Web 服务器,服务器通过 HTTP 标头返回它接收到的请求的源 IP。 你可以按如下方式创建它:

kubectl create deployment source-ip-app --image=registry.k8s.io/echoserver:1.4

输出为:

deployment.apps/source-ip-app created

教程目标

  • 通过多种类型的 Service 暴露一个简单应用
  • 了解每种 Service 类型如何处理源 IP NAT
  • 了解保留源 IP 所涉及的权衡

Type=ClusterIP类型 Service 的源 IP

如果你在 iptables 模式(默认)下运行 kube-proxy,则从集群内发送到 ClusterIP 的数据包永远不会进行源 NAT。 你可以通过在运行 kube-proxy 的节点上获取 http://localhost:10249/proxyMode 来查询 kube-proxy 模式。

kubectl get nodes

输出类似于:

NAME                           STATUS     ROLES    AGE     VERSION
kubernetes-node-6jst   Ready      <none>   2h      v1.13.0
kubernetes-node-cx31   Ready      <none>   2h      v1.13.0
kubernetes-node-jj1t   Ready      <none>   2h      v1.13.0

在其中一个节点上获取代理模式(kube-proxy 监听 10249 端口):

# 在要查询的节点上的 Shell 中运行
curl http://localhost:10249/proxyMode

输出为:

iptables

你可以通过在源 IP 应用程序上创建 Service 来测试源 IP 保留:

kubectl expose deployment source-ip-app --name=clusterip --port=80 --target-port=8080

输出为:

service/clusterip exposed
kubectl get svc clusterip

输出类似于:

NAME         TYPE        CLUSTER-IP    EXTERNAL-IP   PORT(S)   AGE
clusterip    ClusterIP   10.0.170.92   <none>        80/TCP    51s

并从同一集群中的 Pod 中访问 ClusterIP:

kubectl run busybox -it --image=busybox:1.28 --restart=Never --rm

输出类似于:

Waiting for pod default/busybox to be running, status is Pending, pod ready: false
If you don't see a command prompt, try pressing enter.

然后,你可以在该 Pod 中运行命令:

# 从 “kubectl run” 的终端中运行
ip addr
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
    inet 127.0.0.1/8 scope host lo
       valid_lft forever preferred_lft forever
    inet6 ::1/128 scope host
       valid_lft forever preferred_lft forever
3: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1460 qdisc noqueue
    link/ether 0a:58:0a:f4:03:08 brd ff:ff:ff:ff:ff:ff
    inet 10.244.3.8/24 scope global eth0
       valid_lft forever preferred_lft forever
    inet6 fe80::188a:84ff:feb0:26a5/64 scope link
       valid_lft forever preferred_lft forever

然后使用 wget 查询本地 Web 服务器:

# 将 “10.0.170.92” 替换为 Service 中名为 “clusterip” 的 IPv4 地址
wget -qO - 10.0.170.92
CLIENT VALUES:
client_address=10.244.3.8
command=GET
...

不管客户端 Pod 和服务器 Pod 位于同一节点还是不同节点,client_address 始终是客户端 Pod 的 IP 地址。

Type=NodePort类型 Service 的源 IP

默认情况下,发送到 Type=NodePort 的 Service 的数据包会经过源 NAT 处理。你可以通过创建一个 NodePort 的 Service 来测试这点:

kubectl expose deployment source-ip-app --name=nodeport --port=80 --target-port=8080 --type=NodePort

输出为:

service/nodeport exposed
NODEPORT=$(kubectl get -o jsonpath="{.spec.ports[0].nodePort}" services nodeport)
NODES=$(kubectl get nodes -o jsonpath='{ $.items[*].status.addresses[?(@.type=="InternalIP")].address }')

如果你在云供应商上运行,你可能需要为上面报告的 nodes:nodeport 打开防火墙规则。 现在你可以尝试通过上面分配的节点端口从集群外部访问 Service。

for node in $NODES; do curl -s $node:$NODEPORT | grep -i client_address; done

输出类似于:

client_address=10.180.1.1
client_address=10.240.0.5
client_address=10.240.0.3

请注意,这些并不是正确的客户端 IP,它们是集群的内部 IP。这是所发生的事情:

  • 客户端发送数据包到 node2:nodePort
  • node2 使用它自己的 IP 地址替换数据包的源 IP 地址(SNAT)
  • node2 将数据包上的目标 IP 替换为 Pod IP
  • 数据包被路由到 node1,然后到端点
  • Pod 的回复被路由回 node2
  • Pod 的回复被发送回给客户端

用图表示:

 

如图。使用 SNAT 的源 IP(Type=NodePort)

为避免这种情况,Kubernetes 有一个特性可以保留客户端源 IP。 如果将 service.spec.externalTrafficPolicy 设置为 Local, kube-proxy 只会将代理请求代理到本地端点,而不会将流量转发到其他节点。 这种方法保留了原始源 IP 地址。如果没有本地端点,则发送到该节点的数据包将被丢弃, 因此你可以在任何数据包处理规则中依赖正确的源 IP,你可能会应用一个数据包使其通过该端点。

设置 service.spec.externalTrafficPolicy 字段如下:

kubectl patch svc nodeport -p '{"spec":{"externalTrafficPolicy":"Local"}}'

输出为:

service/nodeport patched

现在,重新运行测试:

for node in $NODES; do curl --connect-timeout 1 -s $node:$NODEPORT | grep -i client_address; done

输出类似于:

client_address=198.51.100.79

请注意,你只从运行端点 Pod 的节点得到了回复,这个回复有正确的客户端 IP。

这是发生的事情:

  • 客户端将数据包发送到没有任何端点的 node2:nodePort
  • 数据包被丢弃
  • 客户端发送数据包到必有端点的 node1:nodePort
  • node1 使用正确的源 IP 地址将数据包路由到端点

用图表示:

如图。源 IP(Type=NodePort)保存客户端源 IP 地址

Type=LoadBalancer类型 Service 的源 IP

默认情况下,发送到 Type=LoadBalancer 的 Service 的数据包经过源 NAT处理,因为所有处于 Ready 状态的可调度 Kubernetes 节点对于负载均衡的流量都是符合条件的。 因此,如果数据包到达一个没有端点的节点,系统会将其代理到一个带有端点的节点,用该节点的 IP 替换数据包上的源 IP(如上一节所述)。

你可以通过负载均衡器上暴露 source-ip-app 进行测试:

kubectl expose deployment source-ip-app --name=loadbalancer --port=80 --target-port=8080 --type=LoadBalancer

输出为:

service/loadbalancer exposed

打印 Service 的 IP 地址:

kubectl get svc loadbalancer

输出类似于:

NAME           TYPE           CLUSTER-IP    EXTERNAL-IP       PORT(S)   AGE
loadbalancer   LoadBalancer   10.0.65.118   203.0.113.140     80/TCP    5m

接下来,发送请求到 Service 的 的外部 IP(External-IP):

curl 203.0.113.140

输出类似于:

CLIENT VALUES:
client_address=10.240.0.5
...

然而,如果你在 Google Kubernetes Engine/GCE 上运行, 将相同的 service.spec.externalTrafficPolicy 字段设置为 Local, 故意导致健康检查失败,从而强制没有端点的节点把自己从负载均衡流量的可选节点列表中删除。

用图表示:

 

你可以通过设置注解进行测试:

kubectl patch svc loadbalancer -p '{"spec":{"externalTrafficPolicy":"Local"}}'

你应该能够立即看到 Kubernetes 分配的 service.spec.healthCheckNodePort 字段:

kubectl get svc loadbalancer -o yaml | grep -i healthCheckNodePort

输出类似于:

  healthCheckNodePort: 32122

service.spec.healthCheckNodePort 字段指向每个在 /healthz 路径上提供健康检查的节点的端口。你可以这样测试:

kubectl get pod -o wide -l app=source-ip-app

输出类似于:

NAME                            READY     STATUS    RESTARTS   AGE       IP             NODE
source-ip-app-826191075-qehz4   1/1       Running   0          20h       10.180.1.136   kubernetes-node-6jst

使用 curl 获取各个节点上的 /healthz 端点:

# 在你选择的节点上本地运行
curl localhost:32122/healthz
1 Service Endpoints found

在不同的节点上,你可能会得到不同的结果:

# 在你选择的节点上本地运行
curl localhost:32122/healthz
No Service Endpoints Found

在控制平面上运行的控制器负责分配云负载均衡器。 同一个控制器还在每个节点上分配指向此端口/路径的 HTTP 健康检查。 等待大约 10 秒,让 2 个没有端点的节点健康检查失败,然后使用 curl 查询负载均衡器的 IPv4 地址:

curl 203.0.113.140

输出类似于:

CLIENT VALUES:
client_address=198.51.100.79
...

跨平台支持

只有部分云提供商为 Type=LoadBalancer 的 Service 提供保存源 IP 的支持。 你正在运行的云提供商可能会以几种不同的方式满足对负载均衡器的请求:

  1. 使用终止客户端连接并打开到你的节点/端点的新连接的代理。 在这种情况下,源 IP 将始终是云 LB 的源 IP,而不是客户端的源 IP。
  2. 使用数据包转发器,这样客户端发送到负载均衡器 VIP 的请求最终会到达具有客户端源 IP 的节点,而不是中间代理。

第一类负载均衡器必须使用负载均衡器和后端之间商定的协议来传达真实的客户端 IP, 例如 HTTP 转发或 X-FORWARDED-FOR 标头,或代理协议。 第二类负载均衡器可以通过创建指向存储在 Service 上的 service.spec.healthCheckNodePort 字段中的端口的 HTTP 健康检查来利用上述功能。

清理现场

删除 Service:

kubectl delete svc -l app=source-ip-app

删除 Deployment、ReplicaSet 和 Pod:

kubectl delete deployment source-ip-app

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/785391.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

大模型开发(十二):Function calling 流程优化并实现多轮对话任务

全文共1w余字&#xff0c;预计阅读时间约25~40分钟 | 满满干货(附代码案例)&#xff0c;建议收藏&#xff01; 本文目标&#xff1a;围绕Chat模型的Function calling功能进行更高层次的函数封装&#xff0c;并实现一个能够调用外部函数的多轮对话任务 写在前面&#xff1a;本文…

Vue系列第四篇:Vue2 + Element开发登录页面

Vue开发中Element是一个比较受欢迎的界面库&#xff0c;实际开发中Vue2搭配Element UI开发&#xff0c;Vue3搭配Element plus开发&#xff0c;今天就用Vue2 Element来开发登录页面。 目录 1.Element UI介绍 1.1官网 1.2element-ui安装 2.开发环境准备 2.1core-js安装 2…

20230724将真我Realme手机GT NEO3连接到WIN10的电脑的步骤

20230724将真我Realme手机GT NEO3连接到WIN10的电脑的步骤 2023/7/24 23:23 缘起&#xff1a;因为找使用IMX766的手机&#xff0c;找到Realme手机GT NEO3了。 同样使用IMX766的还有&#xff1a;Redmi Note12Pro 5G IMX766 旗舰影像 OIS光学防抖 OLED柔性直屏 8GB256GB时光蓝 现…

C语言 strlen()函数

一、strlen&#xff08;&#xff09;函数的简介 strlen函数&#xff1a;计算的是字符串str的长度&#xff0c;从字符的首地址开始遍历&#xff0c;以 \0 为结束标志&#xff0c;然后将计算的长度返回&#xff0c;计算的长度并不包含\0。下面是库中的strlen&#xff08;&#xf…

Dubbo Triple 协议重磅升级:支持通过 HTTP 连通 Web 与后端微服务

作者&#xff1a;刘军 全新升级的 Triple 协议 在微服务协议选型方面我们看到越来越多的应用从 Dubbo2 TCP 二进制协议迁移到 Dubbo3 Triple 协议 (兼容 gRPC)&#xff0c;以充分利用 Triple 的高效、全双工、Streaming 流式通信模型等能力&#xff1b;TripleHTTP/2 的组合很…

内存函数讲解

&#x1f495;"痛苦难以避免&#xff0c;而磨难可以选择。"-->村上春树&#x1f495; 作者&#xff1a;Mylvzi 文章主要内容&#xff1a;数据在内存中的存储 内存函数就是管理内存数据的函数&#xff0c;包含于头文件<string.h>中 1.memcpy函数-->内存…

线程池使用时需注意的一些问题

1、正确声明线程池 线程池必须手动通过 ThreadPoolExecutor 的构造函数来声明&#xff0c;避免使用Executors 类创建线程池&#xff0c;会有 OOM 风险。 Executors 返回线程池对象的弊端如下(后文会详细介绍到)&#xff1a; FixedThreadPool 和 SingleThreadExecutor &#xf…

设备JS二次开发指南

设备JS ES6二次开发 #新增设备类 在kiosk-cli-2nd的平台目录下,有摄像头二次开发增加接口示例,继承已有的摄像头类,如下图所示: 在该路径下新建一个设备js文件,如新增密码键盘的设备js:pinpad-2nd.js (1)导入平台设备js import { Device } from @/platform/lib/plat…

Android 海外版本中远程仓库无法拉取问题

在处理海外版本时 &#xff0c;经常遇到远程仓库无法加载的问题&#xff0c;是网络问题导致的。要么&#xff0c;公司运维搭建可翻墙的梯子&#xff0c;或其他的方式避开限制。 还有一种方式&#xff0c;是找到网站对应的ip &#xff0c;在host 中配置&#xff0c;便可绕开限制…

python_day14

导包 from pyspark import SparkConf, SparkContext import osos.environ["PYSPARK_PYTHON"] "D:/dev/python/python3.10.4/python.exe" conf SparkConf().setMaster("local[*]").setAppName("test_spark") sc SparkContext(confc…

【Node.js】低代码管理系统源码:只需点击鼠标,搭建属于你的企业应用

低代码管理系统是一种通过可视化界面和简化的开发工具&#xff0c;使非专业开发人员能够快速构建和管理应用程序的系统。它提供了一套预先定义的组件和模块&#xff0c;使用户可以通过拖放操作来设计应用程序的界面和逻辑。低代码管理系统还提供了自动化的工作流程、数据管理和…

策略模式的实现与应用:掌握灵活算法切换的技巧

文章目录 常用的设计模式有以下几种&#xff1a;一.创建型模式&#xff08;Creational Patterns&#xff09;&#xff1a;二.结构型模式&#xff08;Structural Patterns&#xff09;&#xff1a;三.行为型模式&#xff08;Behavioral Patterns&#xff09;&#xff1a;四.并发…

【RabbitMQ(day1)】RabbitMQ的概述和安装

入门RabbitMQ 一、RabbitMQ的概述二、RabbitMQ的安装三、RabbitMQ管理命令行四、RabbitMQ的GUI界面 一、RabbitMQ的概述 MQ&#xff08;Message Queue&#xff09;翻译为消息队列&#xff0c;通过典型的【生产者】和【消费者】模型&#xff0c;生产者不断向消息队列中生产消息&…

macOS Ventura 13.5 (22G74) Boot ISO 原版可引导镜像下载

macOS Ventura 13.5 (22G74) Boot ISO 原版可引导镜像下载 本站下载的 macOS 软件包&#xff0c;既可以拖拽到 Applications&#xff08;应用程序&#xff09;下直接安装&#xff0c;也可以制作启动 U 盘安装&#xff0c;或者在虚拟机中启动安装。另外也支持在 Windows 和 Lin…

css终极方案PostCSS

一见如故 原理 所有的css框架都在一样的事&#xff0c;那就是由一个css生成一个新的css&#xff0c;那么postcss就来做了一个抽离&#xff1a; 1、将原有的css解析成抽象语法树 2、中间经过若干个插件 3、重新文本化&#xff0c;形成新的css postcss.config.js module.expor…

MX Linux 23 RC1发布

导读MX Linux的开发者宣布MX Linux 23的第一个候选版本已经发布。 MX Linux 是基于 Debian 稳定分支的面向桌面的 Linux 发行&#xff0c;它是 antiX 及早先的 MEPIS Linux 社区合作的产物。它采用 Xfce 作为默认桌面环境&#xff0c;是一份中量级操作系统&#xff0c;并被设计…

技术速览|Meta Llama 2 下一代开源大型语言模型

AI 使用大型语言模型&#xff08;LLM&#xff09;来理解和生成自然语言。LLM 可以从大量文本中学习并创建有关各种主题的文本&#xff0c;并可以完成比如编写代码、生成歌词、总结文章等任务。但有些 LLM 相关课程成本高昂且封闭&#xff0c;而现有的开放课程数量十分有限。这就…

游戏引擎UE如何革新影视行业?创意云全面支持UE云渲染

虚幻引擎UE&#xff08;Unreal Engine&#xff09;作为一款“殿堂级”的游戏引擎&#xff0c;占据了全球80%的商用游戏引擎市场&#xff0c;但如果仅仅将其当做游戏开发的工具&#xff0c;显然是低估了它的能力。比如迪士尼出品的电视剧《曼达洛人》、电影《狮子王》等等都使用…

Server - 调用 K8S 集群 GPU 环境运行算法脚本

欢迎关注我的CSDN&#xff1a;https://spike.blog.csdn.net/ 本文地址&#xff1a;https://blog.csdn.net/caroline_wendy/article/details/131899662 Kubeflow 是基于 Kubernetes 的机器学习工具包&#xff0c;提供了一套技术栈&#xff0c;包含了很多组件&#xff0c;用于支持…

魔功心法-枚举篇

什么是枚举 枚&#xff1a;量词。一般用于较小的片状物&#xff0c;相当于“个”。 举&#xff1a;提出&#xff1a;列举。举一反三。举个例子。 所以&#xff0c;枚举就是一个个列举出来 枚举的作用 魔功的作用&#xff0c;就不过多描述了&#xff0c;主打的就是一个优雅。…