python opencv 找到圆点标定板所有点后通过距离找两个角点6

news2025/1/18 10:39:33

先对大图中的标定板框选,然后再标定计算

工程目录结构

 如果提示没有win32gui则

pip install pywin32

如果是conda的环境则

conda install pywin32

 drawROI.py

import copy
import json

import cv2
import numpy as np
import os
import matplotlib.pyplot as plt
from matplotlib.widgets import Button


WIN_NAME = 'draw_rect'

from win32 import win32gui, win32print
from win32.lib import win32con



def get_list0(path):
    if not os.path.exists(path):
        print("记录该型号标准位置的文件缺失/或输入型号与其对应标准文件名称不一致")
    file1 = open(path, 'r')
    lines = file1.readlines()
    # for line in lines:
    #     if (any(kw in line for kw in kws)):
    #         SeriousFix.write(line + '\n')
    zb0, list0 = [], []
    for i in range(len(lines)):  # 取坐标
        if lines[i] != '(pt1,pt2):\n':
            zb0.append(lines[i][:-1])
    # print(zb0)
    for i in range(0, len(zb0)):  # 转换整数
        zb0[i] = int(zb0[i])
    # print(zb0)

    for i in range(0, len(zb0), 4):  # 每四个取一次,加入列表
        x0, y0, x1, y1 = zb0[i: i + 4]

        # 使点设为左上至右下
        if y1<=y0:
            temp = y0
            y0 = y1
            y1 = temp

        # print(x0,y0,x1,y1)
        list0.append([x0, y0, x1, y1])
    print("list0:", list0)
    file1.close()
    return list0


'''
        初始校验文件,文件名代表类型,检验时读取文件名作为类型判断标准
        打开sourse文件夹,读取标准件原始图片,保存标准位置到biaozhun/labels,保存画有标准位置的图片到biaozhun/imgs
'''
def define_start(img_name, img_path, type):

    class Rect(object):
        def __init__( self ):
            self.tl = (0, 0)
            self.br = (0, 0)

        def regularize( self ):
            """
            make sure tl = TopLeft point, br = BottomRight point
            """
            pt1 = (min(self.tl[0], self.br[0]), min(self.tl[1], self.br[1]))
            pt2 = (max(self.tl[0], self.br[0]), max(self.tl[1], self.br[1]))
            self.tl = pt1
            self.br = pt2

    class DrawRects(object):
        def __init__( self, image, color, thickness=1, center=(10, 10), radius=100 ):
            self.original_image = image
            self.image_for_show = image.copy()
            self.color = color
            self.thickness = thickness
            self.rects = []
            self.current_rect = Rect()
            self.left_button_down = False

            self.center = center
            self.radius = radius

            self.image_for_show_line = np.zeros((image.shape[0], image.shape[1], 3), dtype=np.uint8)

        @staticmethod
        def __clip( value, low, high):
            """
            clip value between low and high
            Parameters
            ----------
            value: a number
                value to be clipped
            low: a number
                low limit
            high: a number
                high limit
            Returns
            -------
            output: a number
                clipped value
            """
            output = max(value, low)
            output = min(output, high)
            return output

        def shrink_point( self, x, y ):
            """
            shrink point (x, y) to inside image_for_show
            Parameters
            ----------
            x, y: int, int
                coordinate of a point
            Returns
            -------
            x_shrink, y_shrink: int, int
                shrinked coordinate
            """
            height, width = self.image_for_show.shape[0:2]
            x_shrink = self.__clip(x, 0, width)
            y_shrink = self.__clip(y, 0, height)
            return (x_shrink, y_shrink)

        if type == 1:
            def getROI( self ):

                roi = image[self.current_rect.tl[1]:self.current_rect.br[1],
                      self.current_rect.tl[0]:self.current_rect.br[0]]

                roi_h = abs(self.current_rect.tl[1] - self.current_rect.br[1])
                roi_w = abs(self.current_rect.tl[0] - self.current_rect.br[0])
                if roi_h > 0 and roi_w > 0:
                    cv2.imwrite(f"./biaozhun/ROI/{img_name}.jpg", roi)
                #     cv2.imwrite("J30J_holes.jpg", roi)
                #
                # roi = image[self.current_rect.tl[1]:self.current_rect.br[1],
                #     self.current_rect.tl[0]:self.current_rect.br[0]]
                # cv2.imwrite(f"./DrawRect/biaozhun/yiwubiaoding/{img_name}.jpg", roi)

        def append( self ):
            """
            add a rect to rects list
            """
            self.rects.append(copy.deepcopy(self.current_rect))

        def pop( self ):
            """
            pop a rect from rects list
            """
            rect = Rect()
            if self.rects:
                rect = self.rects.pop()
            return rect

        def reset_image( self ):
            """
            reset image_for_show using original image
            """
            self.image_for_show = self.original_image.copy()

        def draw( self ):
            """
            draw rects on image_for_show
            """
            for rect in self.rects:
                cv2.rectangle(self.image_for_show, rect.tl, rect.br,
                              color=self.color, thickness=self.thickness)

        def draw_current_rect( self ):
            """
            draw current rect on image_for_show
            """
            cv2.rectangle(self.image_for_show,
                          self.current_rect.tl, self.current_rect.br,
                          color=self.color, thickness=self.thickness)

        # 保存结果
        def save_images_rect( self ):
            cv2.imwrite("./biaozhun/imgs/" + img_name + '.jpg', draw_rects.image_for_show)

        def trans_img( self ):
            self.image_for_show_line = np.zeros((image.shape[0], image.shape[1], 3), dtype=np.uint8)

        def draw_crossline( self ):
            self.trans_img()
            pt_left = (self.center[0] - self.radius, self.center[1])
            pt_right = (self.center[0] + self.radius, self.center[1])
            pt_top = (self.center[0], self.center[1] - self.radius)
            pt_bottom = (self.center[0], self.center[1] + self.radius)

            cv2.line(self.image_for_show_line, pt_left, pt_right,
                     (0, 0, 255), self.thickness)
            cv2.line(self.image_for_show_line, pt_top, pt_bottom,
                     (0, 0, 255), self.thickness)

            # cv2.imshow("crossLine", self.image_for_show_line)
            # print("crossline")

    def onmouse_draw_rect( event, x, y, flags, draw_rects ):
        draw_rects.center = (x, y)
        # txt_save = []

        if event == cv2.EVENT_LBUTTONDOWN:
            # pick first point of rect
            print('pt1: x = %d, y = %d' % (x, y))
            txt_save.append("(pt1,pt2):")
            txt_save.append(str(x))
            txt_save.append(str(y))
            # f.write("(pt1,pt2):\n" + str(x) + '\n' + str(y) + '\n')
            draw_rects.left_button_down = True
            draw_rects.current_rect.tl = (x, y)

        if draw_rects.left_button_down and event == cv2.EVENT_MOUSEMOVE:
            # pick second point of rect and draw current rect
            draw_rects.current_rect.br = draw_rects.shrink_point(x, y)
            draw_rects.reset_image()
            draw_rects.draw()
            draw_rects.draw_current_rect()
            draw_rects.save_images_rect()

        if event == cv2.EVENT_LBUTTONUP:
            # finish drawing current rect and append it to rects list
            draw_rects.left_button_down = False
            draw_rects.current_rect.br = draw_rects.shrink_point(x, y)
            print('pt2: x = %d, y = %d' % (draw_rects.current_rect.br[0],
                                           draw_rects.current_rect.br[1]))
            # txt_save.append("(pt1,pt2):\n")
            txt_save.append(str(draw_rects.current_rect.br[0]))
            txt_save.append(str(draw_rects.current_rect.br[1]))
            # f.write(str(draw_rects.current_rect.br[0]) + '\n' + str(draw_rects.current_rect.br[1]) + '\n')
            draw_rects.current_rect.regularize()
            draw_rects.append()
            draw_rects.getROI()

        if (not draw_rects.left_button_down) and event == cv2.EVENT_RBUTTONDOWN:
            # pop the last rect in rects list
            draw_rects.pop()
            draw_rects.reset_image()
            draw_rects.draw()
            draw_rects.save_images_rect()
            # txt_save = txt_save[:-5]
            txt_save.append('delete')
            # print("clear")

        draw_rects.draw_crossline()
        # return txt_save

    # 根据显示器的大小设置窗口缩放的比例
    def set_ratio(image):
        if image is None:
            return 0, 0, 0
        # print(image.shape)
        img_h, img_w = image.shape[:2]
        """获取真实的分辨率"""
        hDC = win32gui.GetDC(0)
        screen_w = win32print.GetDeviceCaps(hDC, win32con.DESKTOPHORZRES)  # 横向分辨率
        screen_h = win32print.GetDeviceCaps(hDC, win32con.DESKTOPVERTRES)  # 纵向分辨率
        # print(img_w,img_h)

        num_wh = 1
        if img_w * img_h > 1.9e7:  # 两千万像素
            num_wh = 4
        elif img_w * img_h > 1.0e7:  # 一千万像素
            num_wh = 3
        elif min(img_w, img_h) >= min(screen_w, screen_h) or \
                max(img_w, img_h) >= max(screen_w, screen_h):
            num_wh = 2
        else:
            num_wh = 1

        ratio_h = int(img_h / num_wh)
        ratio_w = int(img_w / num_wh)

        return ratio_h, ratio_w, num_wh

    (filepath, file) = os.path.split(img_path)

    # file = 'r.jpg'      # 需要用户选择图片,传入图片的名称

    if file.endswith(".jpg") or file.endswith(".png"):  # 如果file以jpg结尾
        # img_dir = os.path.join(file_dir, file)
        image = cv2.imread(img_path)
        # cv2.namedWindow(WIN_NAME, 2)
        # cv2.imshow(WIN_NAME, image)
        # cv2.waitKey()


        ratio_h, ratio_w, num_wh = set_ratio(image)
        if ratio_h == 0 and ratio_w == 0 and num_wh == 0:
            print("No image")
        # draw_rects = DrawRects(image, (0, 255, 0), 2, (10, 10), 10000)
        draw_rects = DrawRects(image, (0, 255, 0), num_wh, (10, 10), 10000)

        # cv2.namedWindow(WIN_NAME, cv2.WINDOW_NORMAL)
        cv2.namedWindow(WIN_NAME, 2)
        cv2.resizeWindow(WIN_NAME, ratio_w, ratio_h)

        txt_path = "./biaozhun/labels/%s.txt" % (img_name)
        print(txt_path)
        open(txt_path, 'w').close()  # 清空文件数据
        f = open(txt_path, mode='a+')
        txt_save = []
        cv2.setMouseCallback(WIN_NAME, onmouse_draw_rect, draw_rects)  # 画框并保存

        while True:

            dest = cv2.add(draw_rects.image_for_show_line, draw_rects.image_for_show)

            cv2.imshow(WIN_NAME, dest)

            if cv2.waitKey(1) == 13 or cv2.getWindowProperty(WIN_NAME, 0) == -1:  # enter回车键
                # 保存txt坐标
                num_txt_i = 0
                for txt_i in range(len(txt_save)):
                    txt_i = txt_i - num_txt_i
                    if txt_save[txt_i] == 'delete':
                        for j in range(6):
                            del txt_save[txt_i - j]
                        num_txt_i += 6
                for txt_i in txt_save:
                    f.write(str(txt_i) + '\n')
                print("txt_save:", txt_save)
                break

        f.close()
        cv2.destroyAllWindows()

        # 查找距离较近的,删除
        points_list = get_list0(txt_path)
        new_points_list = []
        for i in points_list:
            x0, y0, x1, y1 = i[0], i[1], i[2], i[3]
            if abs(x1 - x0) > 5 and abs(y1 - y0) > 5:
                new_points_list.append('(pt1,pt2):')
                new_points_list.append(x0)
                new_points_list.append(y0)
                new_points_list.append(x1)
                new_points_list.append(y1)
        print(new_points_list)
        file2 = open(txt_path, 'w')
        for i in new_points_list:
            file2.write(str(i) + '\n')
        file2.close()

    else:
        print("输入图片类型错误!请输入JPG/PNG格式的图片!")


if __name__ == '__main__':
    # image = cv2.imread("result.jpg")
    # image = cv2.imread("../OpencvCircleLJQ/Images/Final/E_0_8.jpg")
    # imagePath ="../OpencvCircleLJQ/Images/Final/E_0_2.jpg"
    # imagePath ="./OpencvCircleLJQ/Images/Final/E_0_2.jpg"
    imagePath ="./121001.jpg"

    define_start("ponits",imagePath, 1)

运行完上面的脚本再运行下面这个

CaluateDPI.py

# coding:utf-8
import math
import cv2
import numpy as np
import xml.etree.ElementTree as ET

import matplotlib.pyplot as plt


global DPI
DPI =  0.00245

def mainFigure(img):
    w = 20
    h = 5
    params = cv2.SimpleBlobDetector_Params()
    # Setup SimpleBlobDetector parameters.
    # print('params')
    # print(params)
    # print(type(params))


    # Filter by Area.
    params.filterByArea = True
    params.minArea = 10e1
    params.maxArea = 10e4
    # 图大要修改  100
    params.minDistBetweenBlobs = 100
    # params.filterByColor = True
    params.filterByConvexity = False
    # tweak these as you see fit
    # Filter by Circularity
    # params.filterByCircularity = False
    # params.minCircularity = 0.2
    # params.blobColor = 0
    # # # Filter by Convexity
    # params.filterByConvexity = True
    # params.minConvexity = 0.87
    # Filter by Inertia
    # params.filterByInertia = True
    # params.filterByInertia = False
    # params.minInertiaRatio = 0.01


    gray= cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
    # Detect blobs.
    # image = cv2.resize(gray_img, (int(img.shape[1]/4),int(img.shape[0]/4)), 1, 1, cv2.INTER_LINEAR)
    # image = cv2.resize(gray_img, dsize=None, fx=0.25, fy=0.25, interpolation=cv2.INTER_LINEAR)
    minThreshValue = 40
    _, gray = cv2.threshold(gray, minThreshValue, 255, cv2.THRESH_BINARY)
    # gray = cv2.resize(gray, dsize=None, fx=1, fy=1, interpolation=cv2.INTER_LINEAR)
    # gray = cv2.resize(gray, dsize=None, fx=2, fy=2, interpolation=cv2.INTER_LINEAR)

    # plt.imshow(gray)
    cv2.imshow("gray",gray)
    cv2.waitKey()

    # 找到距离原点(0,0)最近和最远的点
    h, w = img.shape[:2]

    detector = cv2.SimpleBlobDetector_create(params)
    keypoints = detector.detect(gray)
    print("检测点为", len(keypoints))
    # opencv
    im_with_keypoints = cv2.drawKeypoints(gray, keypoints, np.array([]), (0, 255, 0), cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)
    # plt
    # fig = plt.figure()
    # im_with_keypoints = cv2.drawKeypoints(gray, keypoints, np.array([]), (0, 0, 255),  cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)
    color_img = cv2.cvtColor(im_with_keypoints, cv2.COLOR_BGR2RGB)

    DPIall = []

    if keypoints is not None:
        # 找到距离(0,0)最近和最远的点
        kpUpLeft = []
        disUpLeft = []
        for i in range(len(keypoints)):
            dis = math.sqrt(math.pow(keypoints[i].pt[0],2) + math.pow(keypoints[i].pt[1],2))
            disUpLeft.append(dis)
            kpUpLeft.append(keypoints[i].pt)
            # cv2.circle(img, (int(keypoints[i].pt[0]), int(keypoints[i].pt[1])), 10, (0, 255, 0), 2)

        # 找到距离(640*2,0)最近和最远的点
        kpUpRight = []
        disUpRight=[]
        for i in range(len(keypoints)):
            # 最大距离坐标
            dis2 = math.sqrt(math.pow(abs(keypoints[i].pt[0]-w),2) + math.pow(abs(keypoints[i].pt[1]),2))
            disUpRight.append(dis2)
            kpUpRight.append(keypoints[i].pt)


        if disUpRight and disUpLeft:
            disDownLeftIndex = disUpRight.index(max(disUpRight))
            pointDL = kpUpRight[disDownLeftIndex]

            disUpRightIndex = disUpRight.index(min(disUpRight))
            pointUR = kpUpLeft[disUpRightIndex]


            disDownRightIndex = disUpLeft.index(max(disUpLeft))
            pointDR = kpUpLeft[disDownRightIndex]

            disUpLeftIndex = disUpLeft.index(min(disUpLeft))
            pointUL = kpUpLeft[disUpLeftIndex]


            if (pointDR is not None) and (pointUL is not None) and (pointDL is not None) and (pointUR is not None):
                # cv2.circle(color_img, (int(pointDR[0]),int(pointDR[1])), 30, (0, 255, 0),2)
                # cv2.circle(color_img, (int(pointUL[0]),int(pointUL[1])), 30, (0, 255, 0),2)
                # cv2.line(color_img,(int(pointDR[0]),int(pointDR[1])), (int(pointDL[0]),int(pointDL[1])),(0, 0, 255),2)
                #
                # cv2.circle(color_img, (int(pointDL[0]),int(pointDL[1])), 30, (0, 255, 0),2)
                # cv2.circle(color_img, (int(pointUR[0]),int(pointUR[1])), 30, (0, 255, 0),2)
                # cv2.line(color_img, (int(pointDL[0]),int(pointDL[1])), (int(pointUR[0]),int(pointUR[1])), (0, 0, 255), 2)
                # cv2.line(color_img, (int(pointUL[0]),int(pointUL[1])), (int(pointUR[0]),int(pointUR[1])), (0, 0, 255), 2)

                # 显示在原图上 原图减半因为之前放大了
                # cv2.circle(img, (int(pointDR[0]/2), int(pointDR[1]/2)), 10, (0, 255, 0), 2)
                # cv2.circle(img, (int(pointUL[0]/2), int(pointUL[1]/2)), 10, (0, 255, 0), 2)
                # cv2.line(img,(int(pointDR[0]/2),int(pointDR[1]/2)), (int(pointUL[0]/2),int(pointUL[1]/2)),(0, 0, 255),2)
                # dis_UR_DL = math.sqrt(math.pow(pointUR[0]-pointDL[0], 2) + math.pow(pointUR[1]-pointDL[1], 2))/2

                cv2.circle(img, (int(pointDR[0] ), int(pointDR[1] )), 10, (0, 255, 0), 2)
                cv2.circle(img, (int(pointUL[0] ), int(pointUL[1] )), 10, (0, 255, 0), 2)
                cv2.line(img, (int(pointDR[0] ), int(pointDR[1] )), (int(pointUL[0] ), int(pointUL[1] )),
                         (0, 0, 255), 2)
                dis_UR_DL = math.sqrt(math.pow(pointUR[0] - pointDL[0], 2) + math.pow(pointUR[1] - pointDL[1], 2))

                DPIall.append(dis_UR_DL)

                global DPI
                # 只计算斜对角线,约束条件简单一些,增加适用性
                # 单边长a = 0.05*19 对角线
                # DPI = (math.sqrt(1.3435)) / sum(DPIall)

                dis_mm = math.sqrt(math.pow(15, 2) + math.pow(15, 2))
                print("两点的像素距离为", dis_UR_DL, "实际距离为", dis_mm)
                DPI = dis_mm / dis_UR_DL
                print("DPI", DPI)


                # configFile_xml = "wellConfig.xml"
                # tree = ET.parse(configFile_xml)
                # root = tree.getroot()
                # secondRoot = root.find("DPI")
                # print(secondRoot.text)
                #
                # secondRoot.text = str(DPI)
                # tree.write("wellConfig.xml")
                # print("DPI", DPI)
            else:
                pass
            print(DPI)

    # plt.imshow(color_img,interpolation='bicubic')
    # fname = "key points"
    # titlestr = '%s found %d keypoints' % (fname, len(keypoints))
    # plt.title(titlestr)
    # # fig.canvas.set_window_title(titlestr)
    # plt.show()

    # cv2.imshow('color_img', color_img)
    cv2.namedWindow('findCorners',2)
    cv2.imshow('findCorners', img)
    cv2.waitKey()



if __name__ == "__main__":

    # # # 单张图片测试
    # DPI hole
    # 0.01221465904139037
    #
    # DPI needle
    # 0.012229753249515942
    # img = cv2.imread("TwoBiaoDing/ROI_needle.jpg",1)
    img = cv2.imread("biaozhun/ROI/ponits.jpg",1)

    img_roi = img.copy()
    # img_roi = img[640:2000, 1530:2800]
    # cv2.namedWindow("img_roi",2)
    # cv2.imshow("img_roi", img_roi)
    # cv2.waitKey()
    # img = cv2.imread("circles/Snap_0.jpg",1)

    mainFigure(img_roi)

    # # 所有图片测试
    # for i in range(15):
    #     fileName = "Snap_" + str(i) + ".jpg"
    # # img = cv2.imread("circles/Snap_007.jpg",1)
    #     img = cv2.imread("circles/" + fileName,1)
    #     print(fileName)
    #     mainFigure(img)



检测点为 49
两点的像素距离为 1378.8390883031043 实际距离为 21.213203435596427
DPI 0.015384828886525748
0.015384828886525748
 

或者通过下面的方式运行一次全搞定

只需要修改drawROI.py

# 上面的是一样的
import CaluateDPI
if __name__ == '__main__':
    # image = cv2.imread("result.jpg")
    # image = cv2.imread("../OpencvCircleLJQ/Images/Final/E_0_8.jpg")
    # imagePath ="../OpencvCircleLJQ/Images/Final/E_0_2.jpg"
    # imagePath ="./OpencvCircleLJQ/Images/Final/E_0_2.jpg"
    imagePath ="./121001.jpg"

    define_start("ponits",imagePath, 1)

    CaluateDPI.read_img()

这儿不同标定板的图片可能需要修改参数

 

这样一次性就全搞定了

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/78505.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【计算机视觉】Keras API和Tensorflow API的讲解(超详细必看)

觉得有帮助麻烦点赞关注收藏~~~ 一、Keras API Keras是一个用Python编写的高级神经网络API&#xff0c;它能够以Tensorflow、CNTK或者Theano作为后端运行&#xff0c;是一个模块化&#xff0c;最小化并且非常容易扩展的架构&#xff0c;它的开发者Francois Chollet说&#xff…

ESP32 ESP-IDF LVGL8.3.3 ST7735颜色修正

陈拓 2022/12/07-2022/12/10 1. 概述 在《ESP32 ESP-IDF LVGL8.3.3移植(ST7735)》 ESP32 ESP-IDF LVGL8.3.3移植_晨之清风的博客-CSDN博客ESP32 ESP-IDF LVGL8.3.3移植。https://blog.csdn.net/chentuo2000/article/details/128269394?spm1001.2014.3001.5502​​​​​​​…

Python 工匠 第四章 条件分支控制流

基础知识 分支惯用写法 没必要显式和布尔值比较&#xff0c;直接&#xff1a; if user.is_active:pass省略零值判断 if containers_count 0: --> if not containers_count: # 因为bool(0): False但是两者仍有不同 前者只有为0的时候才满足条件 后者则扩大到0, None, 空…

说说Vue-Router和Vue组件中的name属性的使用区别

目录 ⏬ Vue路由匹配规则routes中的name属性的使用 1. 指定页面路由&#xff0c;并传递参数 2. 获取组件的name值&#xff0c;以供页面使用 3. 同个路由&#xff0c;渲染多个视图 ⏬ vue组件中name的使用 1、组件递归操作 2、配合keep-alive对组件缓存做限制 3、在dev-to…

SpringBoot---错误处理机制

PostManHttp请求模拟工具&#xff0c;软件下载链接如下 PostMan下载链接 如果是其他客户端&#xff0c;默认响应一个JSON数据 原理-----SpirngMVC错误处理的自动配置 可以参照ErrorMvcAutoConfiguration&#xff1b;错误处理的自动配置&#xff1b; 给容器中添加了以下组件: …

基于51单片机的多功能电子时钟设计

设计任务&#xff1a; 1、设计任务&#xff1a;利用单片机、时钟芯片 DS1302、温度传感器 DS18B20、1602 液晶 等实现日期、时间、温度的显示即一个简单的万年历。 2、设计要求 &#xff08;1&#xff09;通过 DS1302 能够准确的计时&#xff0c;时间可调并在液晶上显示出来…

RK3568平台开发系列讲解(驱动基础篇)Linux内核面向对象思想之封装

🚀返回专栏总目录 文章目录 一、链表的抽象与封装二、设备管理模型的抽象与封装三、总线设备模型的抽象与封装沉淀、分享、成长,让自己和他人都能有所收获!😄 📢Linux内核虽然是使用C语言实现的,但是内核中的很多子系统、模块在实现过程中处处体现了面向对象编程思想。…

动态规划:将题目转换为01背包问题

文章目录494. 目标和474. 一和零494. 目标和 力扣传送门&#xff1a; https://leetcode.cn/problems/target-sum/ 题目描述&#xff1a; 给你一个整数数组 nums 和一个整数 target 。 向数组中的每个整数前添加 ‘’ 或 ‘-’ &#xff0c;然后串联起所有整数&#xff0c;可以…

easyrecovery2023最新免费版电脑数据恢复软件使用教程

easyrecovery2023版能实现多种不同格式的完成修复和进程的解决&#xff0c;能进行数据的操作和保存解决完成&#xff0c;通过不同的内容进行操作&#xff0c;能解决大部分的使用问题&#xff0c;能安全的进行保存。easyrecovery免安装版对于多种格式下的内容&#xff0c;能对多…

nacos注册中心和配置中心

nacos注册中心和配置中心 nacos 一个更易于构建云原生应用的动态服务发现、配置管理和服务管理平台。 nacos官方文档&#xff1a;https://nacos.io/zh-cn/ 相关概念&#xff1a;https://nacos.io/zh-cn/docs/architecture.html nacos是AP架构,注重可用性和分区容错性&#…

腾讯云双十二服务器2核2G、2核4G、4核8G、8核16G、16核32G配置价格表出炉

现在腾讯云服务器2核2G、2核4G、4核8G、8核16G、16核32G配置价格表已经出来了&#xff0c;大家可以参考一下。腾讯云轻量应用服务器为轻量级的云服务器&#xff0c;使用门槛低&#xff0c;按套餐形式购买&#xff0c;轻量应用服务器套餐自带的公网带宽较大&#xff0c;4M、6M、…

​软件测试之“支付功能”测试

01 测试思维 要分析测试点之前&#xff0c;我们先来梳理一下测试思维。总结来说&#xff0c;任何事物的测试思路都可以总结如下&#xff1a; 第一步&#xff1a;梳理产品的核心业务流程&#xff1a;明白这是个什么项目&#xff0c;实现了什么业务&#xff0c;以及是怎么实现的…

电动汽车电池换电站选址与定容(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️❤️&#x1f4a5;&#x1f4a5;&#x1f4a5; &#x1f389;作者研究&#xff1a;&#x1f3c5;&#x1f3c5;&#x1f3c5;主要研究方向是电力系统和智能算法、机器学…

python学习笔记(13)---(IO对象序列化)面向对象

目录 面向对象---第十一章 IO对象序列化 1.IO流&#xff08;IO stream&#xff09; 2.open&#xff08;&#xff09;方法 3.写入方法&#xff1a;write() 4.对象序列化 面向对象---第十一章 IO对象序列化 1.IO流&#xff08;IO stream&#xff09; &#xff08;1&…

编译原理实验三:算符优先分析算法的设计与实现

实验三 算符优先分析算法的设计与实现 一、 实验目的 根据算符优先分析法&#xff0c;对表达式进行语法分析&#xff0c;使其能够判断一个表达式是否正确。通过算符优先分析方法的实现&#xff0c;加深对自下而上语法分析方法的理解。 二、 实验要求 1、输入文法。可以是如下…

Java 图片上传后为什么会自动旋转90度?

问题&#xff1a; 用户反馈上传后的图片方向不对&#xff0c;起初怀疑是本身图片方向有问题&#xff0c;但是用windows图片查看器打开图片方向是"正常"显示的? 分析&#xff1a; windows默认的图片查看器已经帮我们自动旋转展示了&#xff0c;我们在手机横拍或者扫…

【Vue核心】7.事件处理

事件处理的基本使用 绑定监听 v-on:xxx“fun” xxx“fun” xxx“fun(参数)” 默认事件形参: event 隐含属性对象: $event 绑定方法说明 使用v-on:xxx 或xxx绑定事件,其中xxx是事件名;事件的回调需要配置在methods对象中,最终公在vm上;methods中配置的函数,不要用箭头函…

python 调试IGH库

如何通过python来调试IGH的库呢&#xff1f; 可以使用如下的代码&#xff0c;测试请求主站&#xff0c;把主站变成激活状态。其他的函数也可以类似的一步一步调用。 结果如下&#xff1a; from ctypes import * ighCDLL("/home/cheni/lichuan_bujin/libethercat.so&quo…

开传奇大概需要什么条件

《热血传奇》是盛趣游戏2001年推出的一款大型多人在线角色扮演游戏&#xff08;MMORPG&#xff09;。 该游戏具有战士、魔法师和道士三种职业&#xff0c;所有情节的发生、经验值取得以及各种打猎、采矿等活动都是在网络上即时发生。 《热血传奇》包括白天、黑夜、贸易、物品等…