LeetCode刷题复盘笔记—一文搞懂动态规划之337. 打家劫舍 III问题(动态规划系列第十九篇)

news2024/12/23 2:47:54

今日主要总结一下动态规划完全背包的一道题目,337. 打家劫舍 III

题目:337. 打家劫舍 III

Leetcode题目地址
题目描述:
小偷又发现了一个新的可行窃的地区。这个地区只有一个入口,我们称之为 root 。

除了 root 之外,每栋房子有且只有一个“父“房子与之相连。一番侦察之后,聪明的小偷意识到“这个地方的所有房屋的排列类似于一棵二叉树”。 如果 两个直接相连的房子在同一天晚上被打劫 ,房屋将自动报警。

给定二叉树的 root 。返回 在不触动警报的情况下 ,小偷能够盗取的最高金额 。

示例 1:
在这里插入图片描述

输入: root = [3,2,3,null,3,null,1]
输出: 7
解释: 小偷一晚能够盗取的最高金额 3 + 3 + 1 = 7

示例 2:
在这里插入图片描述

输入: root = [3,4,5,1,3,null,1]
输出: 9
解释: 小偷一晚能够盗取的最高金额 4 + 5 = 9

提示:

树的节点数在 [1, 104] 范围内
0 <= Node.val <= 104

本题重难点

这道题目和一文搞懂动态规划之198. 打家劫舍问题,一文搞懂动态规划之213. 打家劫舍 II问题也是如出一辙,只不过这个换成了树。

如果对树的遍历不够熟悉的话,那本题就有难度了。

对于树的话,首先就要想到遍历方式,前中后序(深度优先搜索)还是层序遍历(广度优先搜索)。

本题一定是要后序遍历,因为通过递归函数的返回值来做下一步计算。

与一文搞懂动态规划之198. 打家劫舍问题,一文搞懂动态规划之213. 打家劫舍 II问题一样,关键是要讨论当前节点抢还是不抢。

如果抢了当前节点,两个孩子就不能动,如果没抢当前节点,就可以考虑抢左右孩子(注意这里说的是“考虑”, 而不是一定抢!!!)

动态规划其实就是使用状态转移容器来记录状态的变化,这里可以使用一个长度为2的数组,记录当前节点偷与不偷所得到的的最大金钱。

这道题目算是树形dp的入门题目,因为是在树上进行状态转移,我们在讲解二叉树的时候说过递归三部曲,那么下面我以递归三部曲为框架,其中融合动规五部曲的内容来进行讲解。

  1. 确定递归函数的参数和返回值
    这里我们要求一个节点 偷与不偷的两个状态所得到的金钱,那么返回值就是一个长度为2的数组。
    参数为当前节点,代码如下:
vector<int> robTree(TreeNode* cur) {

其实这里的返回数组就是dp数组。

所以dp数组(dp table)以及下标的含义:下标为0记录不偷该节点所得到的的最大金钱,下标为1记录偷该节点所得到的的最大金钱。

所以本题dp数组就是一个长度为2的数组!

那么有同学可能疑惑,长度为2的数组怎么标记树中每个节点的状态呢?
别忘了在递归的过程中,系统栈会保存每一层递归的参数。

  1. 确定终止条件
    在遍历的过程中,如果遇到空节点的话,很明显,无论偷还是不偷都是0,所以就返回
if (cur == NULL) return vector<int>{0, 0};
  1. 确定遍历顺序
    首先明确的是使用后序遍历。 因为通过递归函数的返回值来做下一步计算。
    通过递归左节点,得到左节点偷与不偷的金钱。
    通过递归右节点,得到右节点偷与不偷的金钱。

    代码如下:
// 下标0:不偷,下标1:偷
vector<int> left = robTree(cur->left); // 左
vector<int> right = robTree(cur->right); // 右
// 中
  1. 确定单层递归的逻辑
    如果是偷当前节点,那么左右孩子就不能偷,val1 = cur->val + left[0] + right[0]; (如果对下标含义不理解就在回顾一下dp数组的含义)
    如果不偷当前节点,那么左右孩子就可以偷,至于到底偷不偷一定是选一个最大的,所以:val2 = max(left[0], left[1]) + max(right[0], right[1]);
    最后当前节点的状态就是{val2, val1}; 即:{不偷当前节点得到的最大金钱,偷当前节点得到的最大金钱}
    代码如下:
vector<int> left = robTree(cur->left); // 左
vector<int> right = robTree(cur->right); // 右

// 偷cur
int val1 = cur->val + left[0] + right[0];
// 不偷cur
int val2 = max(left[0], left[1]) + max(right[0], right[1]);
return {val2, val1};
  1. 举例推导dp数组

以示例1为例,dp数组状态如下:(注意用后序遍历的方式推导)
在这里插入图片描述

最后头结点就是 取下标0 和 下标1的最大值就是偷得的最大金钱!

C++代码

class Solution {
public:
    vector<int> robTree(TreeNode* cur){
        if(!cur) return vector<int>{0, 0};
        vector<int>leftdp = robTree(cur->left);
        vector<int>rightdp = robTree(cur->right);
       	int dp0 = max(leftdp[0], leftdp[1]) + max(rightdp[0], rightdp[1]);
        int dp1 = cur->val + leftdp[0] + rightdp[0];
        return vector<int>{dp0, dp1};
    }
    int rob(TreeNode* root) {
        vector<int> res = robTree(root);
        return max(res[0], res[1]);
    }
};

总结

动态规划
英文:Dynamic Programming,简称DP,如果某一问题有很多重叠子问题,使用动态规划是最有效的。
动态规划中每一个状态一定是由上一个状态推导出来的,这一点就区分于贪心,贪心没有状态推导,而是从局部直接选最优的

对于动态规划问题,可以拆解为如下五步曲,这五步都搞清楚了,才能说把动态规划真的掌握了!

  1. 确定dp数组(dp table)以及下标的含义
  2. 确定递推公式
  3. dp数组如何初始化
  4. 确定遍历顺序
  5. 举例推导dp数组

这篇文章主要总结了一些动态规划解决337. 打家劫舍 III问题,依然是使用动规五部曲,做每道动态规划题目这五步都要弄清楚才能更清楚的理解题目!

这道题是树形DP的入门题目,通过这道题目大家应该也了解了,所谓树形DP就是在树上进行递归公式的推导。

所以树形DP也没有那么神秘!

只不过平时我们习惯了在一维数组或者二维数组上推导公式,一下子换成了树,就需要对树的遍历方式足够了解!

欢迎大家关注本人公众号:编程复盘与思考随笔

(关注后可以免费获得本人在csdn发布的资源源码)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/78458.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

UDS入门至精通系列:Service 19(二)

文章目录 前言一、协议的定义(19 04/06)二、数据库编辑(CANdelaStudio)三、CAPL应用(Service 19 04 / 06)总结前言 本文主要讲述了ECU诊断中用到的DTC Status以及Service 19 02作用和用法。 本文主要讲述了ECU诊断中用到的DTC Status以及Service 19 02作用和用法。 本文…

Transformer15

今天还是Transformer~~ 都连载这么多了 , 据说是全球首个面向遥感任务设计的亿级视觉大模型 大规模视觉基础模型在基于自然图像的视觉任务中取得了重大进展。得益于良好的可扩展性和表征能力&#xff0c;基于视觉Transformer (Vision Transformer, ViT) 的大规模视觉基础模型吸…

Instruction Tuning(FLAN、instructGPT、chatGPT)

首页最近被chatGPT刷屏&#xff0c;但翔二博主左看右看发现很多想法似乎都是一脉相通的&#xff0c;于是连夜从存档中找了一些文章尝试理一理它的理论路线。 具身智能综述和应用&#xff08;Embodied AI&#xff09;多模态中的指令控制 同时想到今年在智源人工智能前沿报告&a…

线程,线程池的使用

文章目录线程&#xff0c;线程池的使用1. 多线程基础1.1 线程和进程1.2 多线程的创建1.2.1 继承Thread类1.2.2 实现Runnable接口1.2.3 匿名内部类方式1.2.4 守护线程1.3 线程安全1.3.1 卖票案例1.3.2 线程同步2. 线程池的实现方式2.1 Java提供的四种线程池2.2 线程池的创建原理…

微信小程序开发【从0到1~入门篇】

目录 1. 微信小程序介绍 1.1 什么是小程序&#xff1f; 1.2 小程序可以干什么&#xff1f; 2. 申请账号 2.1 申请帐号 2.2 测试号申请&#xff08;我们小程序账号申请完成之后&#xff0c;建议务必要申请一个测试号用来开发&#xff09; 3. 安装开发工具 3.1 选择稳定…

我的创作纪念日(2021-12-10 2022-12-10)

&#x1f306; 内容速览阴差阳错成为一名博主&#xff1f;这一年来的收获日常生活未来憧憬阴差阳错成为一名博主&#xff1f; 如上图所见&#xff0c;她就是我在CSDN上发布的第一篇博客——无标题&#xff0c;有时候机缘来的那么突然&#xff0c;我甚至都没有给她想一个凑合的名…

spring——Spring 注入内部Bean——构造函数方式注入内部 Bean

项目依赖&#xff1a; <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0"xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation"http://maven.apache.or…

【MySQL进阶篇】存储引擎

&#x1f349;个人主页&#xff1a;个人主页 &#x1f353;系列专栏&#xff1a;MySQL数据库 目录 1.MySQL体系结构 1). 连接层 2). 服务层 3). 引擎层 4). 存储层 2.存储引擎介绍 3.存储引擎特点 1. InnoDB 2.MyISAM 3.Memory 4.区别及特点 4.存储引擎选择 1.MySQ…

MAC QT OpenGL 图像曝光度调节

目录 一.MAC QT OpenGL 图像曝光度调节演示 1.原始图片2.效果演示 二.MAC QT OpenGL 图像曝光度调节源码下载三.其他平台图像曝光度调节版本 1.IOS 曝光度演示效果2.Windows OpenGL ES 曝光度演示效果3.Windows OpenGL 曝光度演示效果 四.猜你喜欢 零基础 OpenGL ES 学习路线推…

39-kafka-监控Eagle

39-kafka-监控Eagle&#xff1a; Eagle的安装 1.修改 kafka 启动命令 修改 kafka-server-start.sh 命令中 if [ "x$KAFKA_HEAP_OPTS" "x" ]; then export KAFKA_HEAP_OPTS"-Xmx1G -Xms1G" fi 为 if [ "x$KAFKA_HEAP_OPTS" &qu…

功能测试(八)—— APP之专项测试、性能测试、性能测试工具SoloPi

目录 APP测试要点 目标 一、APP专项测试 1.1 兼容性 1.2 安装 1.3 卸载 1.4 升级 1.5 干扰测试(交叉事件测试) 1.6 Push推送 1.7 用户体验 二、 性能测试工具 2.1 APP性能测试工具介绍 —— SoloPi简介 2.2 APP性能测试工具 —— SoloPi使用 三、APP性能测试 3.…

English Learning - L2 窥得大段表达门径 2022.12.8 周四

English Learning - L2 窥得大段表达门径 2022.12.8 周四引言2 形容词2.1 -ing 形容词 VS -ed 形容词核心思想举例3 名词3.1 修饰成分修饰成分的排列的黄金原则&#xff1a;左二右六举例3.2 名词的数3.2.1 "名词 介词/副词/不定式 等" 构成的复合名词变复数&#xf…

Spring Boot 使用 Micrometer 集成 Prometheus 监控 Java 应用性能

一、背景 SpringBoot的应用监控方案比较多,SpringBoot + Prometheus + Grafana是目前比较常用的方案之一。它们三者之间的关系大概如下图: 二、Micrometer的介绍 Micrometer为Java 平台上的性能数据收集提供了一个通用的 API,它提供了多种度量指标类型(Timers、Guauges、…

【强化学习论文合集】十三.2018机器人与自动化国际会议论文(ICRA2018)

强化学习(Reinforcement Learning, RL),又称再励学习、评价学习或增强学习,是机器学习的范式和方法论之一,用于描述和解决智能体(agent)在与环境的交互过程中通过学习策略以达成回报最大化或实现特定目标的问题。 本专栏整理了近几年国际顶级会议中,涉及强化学习(Rein…

超详细的pytest教程(二)之前后置方法和fixture机制

前言 上一篇文章入门篇咱们介绍了pytest的基本使用&#xff0c;这一篇文章专门给大家讲解pytest中关于用例执行的前后置步骤处理,pytest中用例执行的前后置处理既可以通过测试夹具(fixtrue)来实现&#xff0c;也可以通过xunit 风格的前后置方法来实现。接下来我们一起看看如何…

Unity - 技术美术

198.Shader Graph 旗帜飘扬 官方教程链接&#xff1a;https://learn.unity.com/project/make-a-flag-move-with-shadergraph 本节课程文档&#xff1a;https://gitee.com/chutianshu1981/AwesomeUnityTutorial/blob/main/%E5%9B%BE%E5%BD%A2-%E6%8A%80%E6%9C%AF%E7%BE%8E%E5%B…

ElasticSearch入门到springboot使用

文章目录1.存储引擎产品性能对比2.es安装1.创建目录2.创建挂载的配置文件3.编写docker-compose4.添加文件夹权限5.启动es与kibana6.开放端口7.测试访问8.安装IK分词器3.es核心概念1.文档&#xff1a;就是一条数据2.类型&#xff1a;表字段和类型3.索引&#xff1a;就是数据库4.…

【WIN】Windows10 开启远程连接图形化界面(mstsc)

CONTENTwindows10 rdp 开启远程连接开启远程连接win10 专业版遇到的问题3389 端口不可用简述具体解决windows10 rdp 开启远程连接 开启远程连接 win10 专业版 快捷键&#xff1a; winI 打开设置&#xff0c;然后 #mermaid-svg-bTRFQYmaW8UwxJ5Y {font-family:"trebuche…

java计算机毕业设计ssm医疗垃圾管理系统f5aj8(附源码、数据库)

java计算机毕业设计ssm医疗垃圾管理系统f5aj8&#xff08;附源码、数据库&#xff09; 项目运行 环境配置&#xff1a; Jdk1.8 Tomcat8.5 Mysql HBuilderX&#xff08;Webstorm也行&#xff09; Eclispe&#xff08;IntelliJ IDEA,Eclispe,MyEclispe,Sts都支持&#xff0…

针对低功率/低电源电压应用的5MBd数字光耦合器

针对低功率/低电源电压应用的5MBd数字光耦合器 介绍 电气系统中的数字光电耦合器提供高压绝缘和高压绝缘数据传输时的噪声抑制。一个高质量的绝缘屏障&#xff0c;在里面光耦合器需要提供卓越的可靠性和耐久性信号隔离。 除了绝缘和噪音抑制能力&#xff0c;新的5MBd数字光耦…