Redis项目 PART1

news2025/1/11 11:10:08

第一部分:含注册登入+商户查询(使用缓存)

一、注册登入

1.1 session共享问题

使用redis而不用传统的session的原因(session共享问题):每个tomcat中都有一份属于自己的session,假设用户第一次访问第一台tomcat,并且把自己的信息存放到第一台服务器的session中,但是第二次这个用户访问到了第二台tomcat,那么在第二台服务器上,肯定没有第一台服务器存放的session,所以此时 整个登录拦截功能就会出现问题,我们能如何解决这个问题呢?早期的方案是session拷贝,就是说虽然每个tomcat上都有不同的session,但是每当任意一台服务器的session修改时,都会同步给其他的Tomcat服务器的session,这样的话,就可以实现session的共享了

  1. 每台服务器中都有完整的一份session数据,服务器压力过大。

  2. session拷贝数据时,可能会出现延迟

所以咱们后来采用的方案都是基于redis来完成,我们把session换成redis,redis数据本身就是共享的,就可以避免session共享的问题了在这里插入图片描述

1.2、隐藏用户敏感信息

如果是通过session,将对象的信息直接作为session的value,我们通过浏览器观察到此时用户的全部信息都在,这样极为不靠谱(通过redis直接将user对象存下来也一样),所以我们应当在返回用户信息之前,将用户的敏感信息进行隐藏,采用的核心思路就是书写一个UserDto对象,这个UserDto对象就没有敏感信息了,我们在返回前,将有用户敏感信息的User对象转化成没有敏感信息的UserDto对象,那么就能够避免这个尴尬的问题了

在登录方法处修改

//7.保存用户信息到session中
session.setAttribute("user", BeanUtils.copyProperties(user,UserDTO.class));

在拦截器处:

//5.存在,保存用户信息到Threadlocal
UserHolder.saveUser((UserDTO) user);

在UserHolder处:将user对象换成UserDTO

public class UserHolder {
    private static final ThreadLocal<UserDTO> tl = new ThreadLocal<>();

    public static void saveUser(UserDTO user){
        tl.set(user);
    }

    public static UserDTO getUser(){
        return tl.get();
    }

    public static void removeUser(){
        tl.remove();
    }
}

1.3 Tomcat实现拦截的原理框图

在这里插入图片描述

当用户发起请求时,会访问我们像tomcat注册的端口,任何程序想要运行,都需要有一个线程对当前端口号进行 监听,tomcat也不例外,当监听线程知道用户想要和tomcat连接连接时,那会由监听线程创建socket连接,socket都是成对出现的,用户通过socket像互相传递数据,当tomcat端的socket接受到数据后,此时监听线程会从tomcat的线程池中取出一个线程执行用户请求,在我们的服务部署到tomcat后,线程会找到用户想要访问的工程,然后用这个线程转发到工程中的controller,service,dao中,并且访问对应的DB,在用户执行完请求后,再统一返回,再找到tomcat端的socket,再将数据写回到用户端的socket,完成请求和响应

通过以上讲解,我们可以得知 每个用户其实对应都是去找tomcat线程池中的一个线程来完成工作的, 使用完成后再进行回收,既然每个请求都是独立的,所以在每个用户去访问我们的工程时,我们可以使用threadlocal来做到线程隔离,每个线程操作自己的一份数据

如果是cookie的运作模式,tomcat会自动将sessionId存到浏览器的sessionStorage中,并在ajax请求中,封装为请求头。而现在如果使用redis的token进行登入状态的拦截处理,这部分工作要自己做,详情看1.5基于Redis实现短信登入

1.4 Redis代替session的业务流程

1.4.1、设计key的结构

首先我们要思考一下利用redis来存储数据,那么到底使用哪种结构呢?由于存入的数据比较简单,我们可以考虑使用String,或者是使用哈希,如下图,如果使用String,同学们注意他的value,用多占用一点空间,如果使用哈希,则他的value中只会存储他数据本身,如果不是特别在意内存,其实使用String就可以啦。

在这里插入图片描述

1.4.2、设计key的具体细节:token

所以我们可以使用String结构,就是一个简单的key,value键值对的方式,但是关于key的处理,session他是每个用户都有自己的session,但是redis的key是共享的,咱们就不能使用code了(用户A的key是code,value是验证码,用户B的key也是code,这样验证就覆盖了,在redis之中,多用户同时操作redis,要选择该用户唯一的key)

在设计这个key的时候,我们之前讲过需要满足两点

1、key要具有唯一性

2、key要方便携带

如果我们采用phone:手机号这个的数据来存储当然是可以的,但是如果把这样的敏感数据存储到redis中并且从页面中带过来毕竟不太合适,所以我们在后台生成一个随机串token,然后让前端带来这个token就能完成我们的整体逻辑了

1.4.3、整体访问业务流程(流程图)

当注册完成后,用户去登录会去校验用户提交的手机号和验证码(第一次使用redis),是否一致,如果一致,则根据手机号查询用户信息,不存在则新建,最后将用户数据保存到redis(第二次使用redis),并且生成token作为redis的key。

前面是注册登入,现在是拦截器的主场,进行登入校验。当我们校验用户是否登录时,会去携带着token进行访问,从redis中取出token对应的value,判断是否存在这个数据,如果没有则拦截,如果存在则将其保存到threadLocal中,并且放行。
在这里插入图片描述

  • 上图总结一下,在这个业务中一共两个地方用到了Redis,一个是发送的验证码要用redis存着(防止出现session共享问题),另一个是使用token将当前的登入状态保存在redis中
  • 注意。之前基于session,tomcat会自动地将sessionId提交到前端,前端拿着sessionid就可以进行校验,现在肯定就不一样了,现在这个token要自己上传给前端,前端每次都携带token进行验证。
    在这里插入图片描述
    下面是前端common的代码,这个common中有拦截器,会把每个请求都拦截下来,authorization作为请求头的一部分加进入

在这里插入图片描述
在这里插入图片描述

1.5 基于Redis实现短信登录

UserServiceImpl代码

@Override
public Result login(LoginFormDTO loginForm, HttpSession session) {
    // 1.校验手机号
    String phone = loginForm.getPhone();
    if (RegexUtils.isPhoneInvalid(phone)) {
        // 2.如果不符合,返回错误信息
        return Result.fail("手机号格式错误!");
    }
    // 3.从redis获取验证码并校验
    String cacheCode = stringRedisTemplate.opsForValue().get(LOGIN_CODE_KEY + phone);
    String code = loginForm.getCode();
    if (cacheCode == null || !cacheCode.equals(code)) {
        // 不一致,报错
        return Result.fail("验证码错误");
    }

    // 4.一致,根据手机号查询用户 select * from tb_user where phone = ?
    User user = query().eq("phone", phone).one();

    // 5.判断用户是否存在
    if (user == null) {
        // 6.不存在,创建新用户并保存
        user = createUserWithPhone(phone);
    }

    // 7.保存用户信息到 redis中
    // 7.1.随机生成token,作为登录令牌
    String token = UUID.randomUUID().toString(true);
    // 7.2.将User对象转为HashMap存储
    UserDTO userDTO = BeanUtil.copyProperties(user, UserDTO.class);
    Map<String, Object> userMap = BeanUtil.beanToMap(userDTO, new HashMap<>(),
            CopyOptions.create()
                    .setIgnoreNullValue(true)
                    .setFieldValueEditor((fieldName, fieldValue) -> fieldValue.toString()));
    // 7.3.存储
    String tokenKey = LOGIN_USER_KEY + token;
    stringRedisTemplate.opsForHash().putAll(tokenKey, userMap);
    // 7.4.设置token有效期
    stringRedisTemplate.expire(tokenKey, LOGIN_USER_TTL, TimeUnit.MINUTES);

    // 8.返回token
    return Result.ok(token);
}

1.6 解决状态登录刷新问题

1.6.1 初始方案思路总结:

在这个方案中,他确实可以使用对应路径的拦截,同时刷新登录token令牌的存活时间,但是现在这个拦截器他只是拦截需要被拦截的路径,假设当前用户访问了一些不需要拦截的路径,那么这个拦截器就不会生效,所以此时令牌刷新的动作实际上就不会执行,所以这个方案他是存在问题的

解决状态在这里插入图片描述

1.6.2 优化方案

既然之前的拦截器无法对不需要拦截的路径生效,那么我们可以添加一个拦截器,在第一个拦截器中拦截所有的路径,把第二个拦截器做的事情放入到第一个拦截器中,同时刷新令牌,因为第一个拦截器有了threadLocal的数据,所以此时第二个拦截器只需要判断拦截器中的user对象是否存在即可,完成整体刷新功能。
在这里插入图片描述

1.6.3 代码

RefreshTokenInterceptor

public class RefreshTokenInterceptor implements HandlerInterceptor {

    private StringRedisTemplate stringRedisTemplate;

    public RefreshTokenInterceptor(StringRedisTemplate stringRedisTemplate) {
        this.stringRedisTemplate = stringRedisTemplate;
    }

    @Override
    public boolean preHandle(HttpServletRequest request, HttpServletResponse response, Object handler) throws Exception {
        // 1.获取请求头中的token
        String token = request.getHeader("authorization");
        if (StrUtil.isBlank(token)) {
            return true;
        }
        // 2.基于TOKEN获取redis中的用户
        String key  = LOGIN_USER_KEY + token;
        Map<Object, Object> userMap = stringRedisTemplate.opsForHash().entries(key);
        // 3.判断用户是否存在
        if (userMap.isEmpty()) {
            return true;
        }
        // 5.将查询到的hash数据转为UserDTO
        UserDTO userDTO = BeanUtil.fillBeanWithMap(userMap, new UserDTO(), false);
        // 6.存在,保存用户信息到 ThreadLocal
        UserHolder.saveUser(userDTO);
        // 7.刷新token有效期
        stringRedisTemplate.expire(key, LOGIN_USER_TTL, TimeUnit.MINUTES);
        // 8.放行
        return true;
    }

    @Override
    public void afterCompletion(HttpServletRequest request, HttpServletResponse response, Object handler, Exception ex) throws Exception {
        // 移除用户
        UserHolder.removeUser();
    }
}
	

LoginInterceptor

public class LoginInterceptor implements HandlerInterceptor {

    @Override
    public boolean preHandle(HttpServletRequest request, HttpServletResponse response, Object handler) throws Exception {
        // 1.判断是否需要拦截(ThreadLocal中是否有用户)
        if (UserHolder.getUser() == null) {
            // 没有,需要拦截,设置状态码
            response.setStatus(401);
            // 拦截
            return false;
        }
        // 有用户,则放行
        return true;
    }
}

二、 商户查询缓存

  • 注意两个点:
    • 1 查询缓存三个结果:查到缓存(isNotEmpty),查到空字符串(防止缓存穿透“”),什么也没查到(null)
    • 2 第一点也可能是两个结果:解决热点key,缓存击穿问题的时候,所有的数据都会存在redis中,不存在缓存穿透问题,所以不会查询到空的字符串。
    • 3 查询数据库两个结构:查到(直接存缓存),没查到(防止缓存穿透,存一个空字符串)

2.1 什么是缓存?

实际开发中,系统也需要"避震器",防止过高的数据访问猛冲系统,导致其操作线程无法及时处理信息而瘫痪;

这在实际开发中对企业讲,对产品口碑,用户评价都是致命的;所以企业非常重视缓存技术;

缓存(Cache),就是数据交换的缓冲区,俗称的缓存就是缓冲区内的数据,一般从数据库中获取,存储于本地代码(例如:

1:Static final ConcurrentHashMap<K,V> map = new ConcurrentHashMap<>(); 本地用于高并发

例2:static final Cache<K,V> USER_CACHE = CacheBuilder.newBuilder().build(); 用于redis等缓存

例3:Static final Map<K,V> map =  new HashMap(); 本地缓存

由于==其被Static修饰,所以随着类的加载而被加载到内存之中 ==作为本地缓存,由于其又被final修饰,所以其引用(例3:map)和对象(例3:new HashMap())之间的关系是固定的,不能改变,因此不用担心赋值(=)导致缓存失效;

2.2 添加商户缓存

在我们查询商户信息时,我们是直接操作从数据库中去进行查询的,大致逻辑是这样,直接查询数据库那肯定慢咯,所以我们需要增加缓存(而且商铺一般改变的比较少,访问的又非常多,使用缓存非常合适)

@GetMapping("/{id}")
public Result queryShopById(@PathVariable("id") Long id) {
    //这里是直接查询数据库
    return shopService.queryById(id);
}

2.2.1 、缓存模型和思路(框图)

标准的操作方式就是查询数据库之前先查询缓存,如果缓存数据存在,则直接从缓存中返回,如果缓存数据不存在,再查询数据库,然后将数据存入redis。
在这里插入图片描述

2.1.2、代码如下

代码思路:如果缓存有,则直接返回,如果缓存不存在,则查询数据库,然后存入redis。
注意:hutool中的 isNotBlank指的是: 非null,非“”,非“ ”, 这一点和 直接判断null区分开
在这里插入图片描述

2.3 缓存更新策略

缓存更新是redis为了节约内存而设计出来的一个东西,主要是因为内存数据宝贵,当我们向redis插入太多数据,此时就可能会导致缓存中的数据过多,所以redis会对部分数据进行更新,或者把他叫为淘汰更合适。

**内存淘汰:**redis自动进行,当redis内存达到咱们设定的max-memery的时候,会自动触发淘汰机制,淘汰掉一些不重要的数据(可以自己设置策略方式)

**超时剔除:**当我们给redis设置了过期时间ttl之后,redis会将超时的数据进行删除,方便咱们继续使用缓存

**主动更新:**我们可以手动调用方法把缓存删掉,通常用于解决缓存和数据库不一致问题

在这里插入图片描述

2.3.1 、数据库缓存不一致解决方案:

由于我们的缓存的数据源来自于数据库,而数据库的数据是会发生变化的,因此,如果当数据库中数据发生变化,而缓存却没有同步,此时就会有一致性问题存在,其后果是:

用户使用缓存中的过时数据,就会产生类似多线程数据安全问题,从而影响业务,产品口碑等;怎么解决呢?有如下几种方案

Cache Aside Pattern 人工编码方式:缓存调用者在更新完数据库后再去更新缓存,也称之为双写方案

Read/Write Through Pattern : 由系统本身完成,数据库与缓存的问题交由系统本身去处理

Write Behind Caching Pattern :调用者只操作缓存,其他线程去异步处理数据库,实现最终一致

2.3.2 、数据库和缓存不一致采用什么方案

综合考虑使用方案一,但是方案一调用者如何处理呢?这里有几个问题

操作缓存和数据库时有三个问题需要考虑:

如果采用第一个方案,那么假设我们每次操作数据库后,都操作缓存,但是中间如果没有人查询,那么这个更新动作实际上只有最后一次生效,中间的更新动作意义并不大,我们可以把缓存删除,等待再次查询时,将缓存中的数据加载出来

  • 删除缓存还是更新缓存?

    • 更新缓存:每次更新数据库都更新缓存,无效写操作较多
    • 删除缓存:更新数据库时让缓存失效,查询时再更新缓存
  • 如何保证缓存与数据库的操作的同时成功或失败?

    • 单体系统,将缓存与数据库操作放在一个事务
    • 分布式系统,利用TCC等分布式事务方案

应该具体操作缓存还是操作数据库,我们应当是先操作数据库,再删除缓存,原因在于,如果你选择第一种方案,在两个线程并发来访问时,假设线程1先来,他先把缓存删了,此时线程2过来,他查询缓存数据并不存在,此时他写入缓存,当他写入缓存后,线程1再执行更新动作时,实际上写入的就是旧的数据,新的数据被旧数据覆盖了。

  • 先操作缓存还是先操作数据库?
    • 先删除缓存,再操作数据库
    • 先操作数据库,再删除缓存

在这里插入图片描述

2.4 实现商铺和缓存与数据库双写一致

核心思路如下:

修改ShopController中的业务逻辑,满足下面的需求:

根据id查询店铺时,如果缓存未命中,则查询数据库,将数据库结果写入缓存,并设置超时时间

根据id修改店铺时,先修改数据库,再删除缓存

修改重点代码1:修改ShopServiceImpl的queryById方法

设置redis缓存时添加过期时间

在这里插入图片描述

修改重点代码2

代码分析:通过之前的淘汰,我们确定了采用删除策略,来解决双写问题,当我们修改了数据之后,然后把缓存中的数据进行删除,查询时发现缓存中没有数据,则会从mysql中加载最新的数据,从而避免数据库和缓存不一致的问题

在这里插入图片描述

2.5 缓存穿透问题的解决思路

缓存穿透 :缓存穿透是指客户端请求的数据在缓存中和数据库中都不存在,这样缓存永远不会生效,这些请求都会打到数据库。

常见的解决方案有两种:

  • 缓存空对象
    • 优点:实现简单,维护方便
    • 缺点:
      • 额外的内存消耗
      • 可能造成短期的不一致
  • 布隆过滤
    • 优点:内存占用较少,没有多余key
    • 缺点:
      • 实现复杂
      • 存在误判可能

**缓存空对象思路分析:**当我们客户端访问不存在的数据时,先请求redis,但是此时redis中没有数据,此时会访问到数据库,但是数据库中也没有数据,这个数据穿透了缓存,直击数据库,我们都知道数据库能够承载的并发不如redis这么高,如果大量的请求同时过来访问这种不存在的数据,这些请求就都会访问到数据库,简单的解决方案就是哪怕这个数据在数据库中也不存在,我们也把这个数据存入到redis中去,这样,下次用户过来访问这个不存在的数据,那么在redis中也能找到这个数据就不会进入到缓存了

**布隆过滤:**布隆过滤器其实采用的是哈希思想来解决这个问题,通过一个庞大的二进制数组,走哈希思想去判断当前这个要查询的这个数据是否存在,如果布隆过滤器判断存在,则放行,这个请求会去访问redis,哪怕此时redis中的数据过期了,但是数据库中一定存在这个数据,在数据库中查询出来这个数据后,再将其放入到redis中,

假设布隆过滤器判断这个数据不存在,则直接返回

这种方式优点在于节约内存空间,存在误判,误判原因在于:布隆过滤器走的是哈希思想,只要哈希思想,就可能存在哈希冲突

在这里插入图片描述

2.6 编码解决商品查询的缓存穿透问题:

核心思路如下:(使用缓存空对象的思路)

在原来的逻辑中,我们如果发现这个数据在mysql中不存在,直接就返回404了,这样是会存在缓存穿透问题的

现在的逻辑中:如果这个数据不存在,我们不会返回404 ,还是会把这个数据写入到Redis中,并且将value设置为空,而当再次发起查询时,我们如果发现命中之后,判断这个value是否是null,如果是null,则是之前写入的数据,证明是缓存穿透数据,如果不是,则直接返回数据。

在这里插入图片描述

  • 代码:
public Result queryShopById(Long id) {
    //1、先查询缓存,如果命中,直接返回数据
    String redisShop = stringRedisTemplate.opsForValue().get(SHOP_CACHE_KEY + id);
    //if (redisShop != null) {
    if (StrUtil.isNotBlank(redisShop)){ //指不含: null, “”, “   ”
        Shop redisShopBean = BeanUtil.toBean(redisShop, Shop.class);
        return Result.ok(redisShopBean);
    }
    if (redisShop != null){ //指的就是 “” “   ” 缓存穿透的模式,命中了空值
        //return Result.fail("查询的商户不存在");
        //返回错误信息
        return null;
    }
    //2、如果没命中,去数据库查
    Shop databaseShop = this.query().eq("id", id).one();//getById()更方便一些
    //3、如果数据库查出来也没有,设置对应的空值redis
    if (databaseShop == null) {
        stringRedisTemplate.opsForValue().set(SHOP_CACHE_KEY + id, "");
        //设置一个短一点的过期时间
        stringRedisTemplate.expire(SHOP_CACHE_KEY + id, CACHE_SHOP_TTL, TimeUnit.MINUTES);
        return Result.fail("商铺不存在!");
    }
    
        //数据库查出目标数据,更新到redis
    stringRedisTemplate.opsForValue().set(SHOP_CACHE_KEY + id, JSONUtil.toJsonStr(databaseShop));
    stringRedisTemplate.expire(SHOP_CACHE_KEY + id, CACHE_SHOP_TTL, TimeUnit.MINUTES);
    return Result.ok(databaseShop);
    
}

小总结:

缓存穿透产生的原因是什么?

  • 用户请求的数据在缓存中和数据库中都不存在,不断发起这样的请求,给数据库带来巨大压力

缓存穿透的解决方案有哪些?

  • 缓存null值
  • 布隆过滤
  • 增强id的复杂度,避免被猜测id规律
  • 做好数据的基础格式校验
  • 加强用户权限校验
  • 做好热点参数的限流

2.7 缓存雪崩问题及解决思路

缓存雪崩是指在同一时段大量的缓存key同时失效或者Redis服务宕机,导致大量请求到达数据库,带来巨大压力。

解决方案:

  • 给不同的Key的TTL添加随机值
  • 利用Redis集群提高服务的可用性
  • 给缓存业务添加降级限流策略
  • 给业务添加多级缓存

在这里插入图片描述

2.8 缓存击穿问题及解决思路

缓存击穿问题也叫热点Key问题,就是一个被高并发访问并且缓存重建业务较复杂的key突然失效了,无数的请求访问会在瞬间给数据库带来巨大的冲击。

常见的解决方案有两种:

  • 互斥锁
  • 逻辑过期
  • 看门狗?----这个是分布式锁的知识

逻辑分析:假设线程1在查询缓存之后,本来应该去查询数据库,然后把这个数据重新加载到缓存的,此时只要线程1走完这个逻辑,其他线程就都能从缓存中加载这些数据了,但是假设在线程1没有走完的时候,后续的线程2,线程3,线程4同时过来访问当前这个方法, 那么这些线程都不能从缓存中查询到数据,那么他们就会同一时刻来访问查询缓存,都没查到,接着同一时间去访问数据库,同时的去执行数据库代码,对数据库访问压力过大

在这里插入图片描述

解决方案一、使用锁来解决:

因为锁能实现互斥性。假设线程过来,只能一个人一个人的来访问数据库,从而避免对于数据库访问压力过大,但这也会影响查询的性能,因为此时会让查询的性能从并行变成了串行,我们可以采用tryLock方法 + double check来解决这样的问题。

假设现在线程1过来访问,他查询缓存没有命中,但是此时他获得到了锁的资源,那么线程1就会一个人去执行逻辑,假设现在线程2过来,线程2在执行过程中,并没有获得到锁,那么线程2就可以进行到休眠,直到线程1把锁释放后,线程2获得到锁,然后再来执行逻辑,此时就能够从缓存中拿到数据了。

在这里插入图片描述

解决方案二、逻辑过期方案

方案分析:我们之所以会出现这个缓存击穿问题,主要原因是在于我们对key设置了过期时间,假设我们不设置过期时间,其实就不会有缓存击穿的问题,但是不设置过期时间,这样数据不就一直占用我们内存了吗,我们可以采用逻辑过期方案。

我们把过期时间设置在 redis的value中,注意:这个过期时间并不会直接作用于redis,而是我们后续通过逻辑去处理。假设线程1去查询缓存,然后从value中判断出来当前的数据已经过期了,此时线程1去获得互斥锁,那么其他线程会进行阻塞,获得了锁的线程他会开启一个 线程去进行 以前的重构数据的逻辑,直到新开的线程完成这个逻辑后,才释放锁, 而线程1直接进行返回,假设现在线程3过来访问,由于线程线程2持有着锁,所以线程3无法获得锁,线程3也直接返回数据,只有等到新开的线程2把重建数据构建完后,其他线程才能走返回正确的数据。

这种方案巧妙在于,异步的构建缓存,缺点在于在构建完缓存之前,返回的都是脏数据。

在这里插入图片描述

进行对比

**互斥锁方案:**由于保证了互斥性,所以数据一致,且实现简单,因为仅仅只需要加一把锁而已,也没其他的事情需要操心,所以没有额外的内存消耗,缺点在于有锁就有死锁问题的发生,且只能串行执行性能肯定受到影响

逻辑过期方案: 线程读取过程中不需要等待,性能好,有一个额外的线程持有锁去进行重构数据,但是在重构数据完成前,其他的线程只能返回之前的数据,且实现起来麻烦

在这里插入图片描述

2.9 利用互斥锁解决缓存击穿问题(框图+代码)

核心思路:相较于原来从缓存中查询不到数据后直接查询数据库而言,现在的方案是 进行查询之后,如果从缓存没有查询到数据,则进行互斥锁的获取,获取互斥锁后,判断是否获得到了锁,如果没有获得到,则休眠,过一会再进行尝试,直到获取到锁为止,才能进行查询

如果获取到了锁的线程,再去进行查询,查询后将数据写入redis,再释放锁,返回数据,利用互斥锁就能保证只有一个线程去执行操作数据库的逻辑,防止缓存击穿

在这里插入图片描述

操作锁的代码:

核心思路就是利用redis的setnx方法来表示获取锁,该方法含义是redis中如果没有这个key,则插入成功,返回1,在stringRedisTemplate中返回true, 如果有这个key则插入失败,则返回0,在stringRedisTemplate返回false,我们可以通过true,或者是false,来表示是否有线程成功插入key,成功插入的key的线程我们认为他就是获得到锁的线程。

private boolean tryLock(String key) {
    Boolean flag = stringRedisTemplate.opsForValue().setIfAbsent(key, "1", 10, TimeUnit.SECONDS);
    return BooleanUtil.isTrue(flag);
}

private void unlock(String key) {
    stringRedisTemplate.delete(key);
}

操作代码:

public <R, ID> R queryWithMutex(
            String keyPrefix, ID id, Class<R> type, Function<ID, R> dbFallback, Long time, TimeUnit unit) {
        String key = keyPrefix + id;
        // 1.从redis查询商铺缓存
        String shopJson = stringRedisTemplate.opsForValue().get(key);
        // 2.判断是否存在
        if (StrUtil.isNotBlank(shopJson)) {
            // 3.存在,直接返回
            return JSONUtil.toBean(shopJson, type);
        }
        // 判断命中的是否是空值
        if (shopJson != null) {
            // 返回一个错误信息
            return null;
        }

        // 4.实现缓存重建
        // 4.1.获取互斥锁
        String lockKey = LOCK_SHOP_KEY + id;
        R r = null;
        try {
            boolean isLock = tryLock(lockKey);
            // 4.2.判断是否获取成功
            if (!isLock) {
                // 4.3.获取锁失败,休眠并重试
                Thread.sleep(50);
                return queryWithMutex(keyPrefix, id, type, dbFallback, time, unit);
            }
            // 4.4.获取锁成功,根据id查询数据库
            r = dbFallback.apply(id);
            // 5.不存在,返回错误
            if (r == null) {
                // 将空值写入redis
                stringRedisTemplate.opsForValue().set(key, "", CACHE_NULL_TTL, TimeUnit.MINUTES);
                // 返回错误信息
                return null;
            }
            // 6.存在,写入redis
            this.set(key, r, time, unit);
        } catch (InterruptedException e) {
            throw new RuntimeException(e);
        }finally {
            // 7.释放锁
            unlock(lockKey);
        }
        // 8.返回
        return r;
    }

2.10 利用逻辑过期解决缓存击穿问题

思路分析:当用户开始查询redis时,判断是否命中,如果没有命中则直接返回空数据,不查询数据库,而一旦命中后,将value取出,判断value中的过期时间是否满足,如果没有过期,则直接返回redis中的数据,如果过期,则在开启独立线程后直接返回之前的数据,独立线程去重构数据,重构完成后释放互斥锁。

当一个方法的返回值不确定的时候,用泛型!

在这里插入图片描述

如何封装数据:因为现在redis中存储的数据的value需要带上过期时间,此时要么你去修改原来的实体类,要么你

步骤一、

新建一个实体类,我们采用第二个方案,这个方案,对原来代码没有侵入性。学会使用LocalDateTime

@Data
public class RedisData {
    private LocalDateTime expireTime;
    private Object data;
}

后续关键操作:

// 4.命中,需要先把json反序列化为对象
RedisData redisData = JSONUtil.toBean(json, RedisData.class);
R r = JSONUtil.toBean((JSONObject) redisData.getData(), type);
LocalDateTime expireTime = redisData.getExpireTime();
// 5.判断是否过期
if(expireTime.isAfter(LocalDateTime.now())) {
    // 5.1.未过期,直接返回店铺信息
    return r;
}

步骤二、

ShopServiceImpl 新增此方法,利用单元测试进行缓存预热

在这里插入图片描述

步骤三:正式代码

ShopServiceImpl

private static final ExecutorService CACHE_REBUILD_EXECUTOR = Executors.newFixedThreadPool(10);
public Shop queryWithLogicalExpire( Long id ) {
    String key = CACHE_SHOP_KEY + id;
    // 1.从redis查询商铺缓存
    String json = stringRedisTemplate.opsForValue().get(key);
    // 2.判断是否存在
    if (StrUtil.isBlank(json)) {
        // 3.存在,直接返回
        return null;
    }
    // 4.命中,需要先把json反序列化为对象
    RedisData redisData = JSONUtil.toBean(json, RedisData.class);
    Shop shop = JSONUtil.toBean((JSONObject) redisData.getData(), Shop.class);
    LocalDateTime expireTime = redisData.getExpireTime();
    // 5.判断是否过期
    if(expireTime.isAfter(LocalDateTime.now())) {
        // 5.1.未过期,直接返回店铺信息
        return shop;
    }
    // 5.2.已过期,需要缓存重建
    // 6.缓存重建
    // 6.1.获取互斥锁
    String lockKey = LOCK_SHOP_KEY + id;
    boolean isLock = tryLock(lockKey);
    // 6.2.判断是否获取锁成功
    if (isLock){
        CACHE_REBUILD_EXECUTOR.submit( ()->{

            try{
                //重建缓存
                this.saveShop2Redis(id,20L);
            }catch (Exception e){
                throw new RuntimeException(e);
            }finally {
                unlock(lockKey);
            }
        });
    }
    // 6.4.返回过期的商铺信息
    return shop;
}

2.11、封装Redis工具类

基于StringRedisTemplate封装一个缓存工具类,满足下列需求:

  • 方法1:将任意Java对象序列化为json并存储在string类型的key中,并且可以设置TTL过期时间
  • 方法2:将任意Java对象序列化为json并存储在string类型的key中,并且可以设置逻辑过期时间,用于处理缓

存击穿问题

  • 方法3:根据指定的key查询缓存,并反序列化为指定类型,利用缓存空值的方式解决缓存穿透问题
  • 方法4:根据指定的key查询缓存,并反序列化为指定类型,需要利用逻辑过期解决缓存击穿问题

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/782359.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

网络子系统学习3:网络访问层

目录 网络访问层 网络设备的表示 数据结构 注册网络设备 接收分组 传统方法 对高速接口的支持 发送分组 网络访问层 网络实现的第一层&#xff0c;即网络访问层。该层主要负责在计算机之间传输信息&#xff0c;与网卡的设备驱动程序直接协作。 本次不会讲驱动程序的设计…

全面助力AI人工智能在科研、教学与实践技能

目录 模块一 编程入门与进阶提高 模块二 科研数据可视化 模块三 信息检索与常用科研工具 模块四 科技论文写作与技巧 模块五 数据预处理与特征工程 模块六 多元线性回归 模块七 机器学习 模块八 深度学习 模块九 答疑讨论 更多推荐 在人工智能领域进行研究和深耕&…

PCB封装设计指导(十二)画出器件禁布,过孔走线禁布

PCB封装设计指导(十二)画出器件禁布,过孔走线禁布 对于分离器件或者Datasheet中有标注出走线或者过孔禁布,在封装中需要把这些信息体现出来,如何添加,见如下说明 1. 一般来讲,只有分离器件,比如电阻,电容,晶振才会在中间加上route keepout 和via keepout Via keep o…

Qt与opencv学习记录2

我希望把这篇文章中的效果实现。 【Qt学习】 OpenCV美图特效_qt图像处理_顾城沐心的博客-CSDN博客 问题1&#xff1a; 我发现是因为我使用的是MSVC2017 32位套件&#xff0c;改为MSVC2017 64位套件debug就好了。 感觉这是因为我选用的lib库也是64位的。 E:\opencv454\opencv…

使用STM32 再实现PWM小车两轮分别调速

关于PWM调速的原理&#xff0c;其实在之前89C52开发小车的时候也已经详细的描述过&#xff0c;所以主要的区别还是STM32和89C52的PWM实现区别。 关于STM32的PWM实现&#xff0c;是从CubeMX的配置开始的&#xff1a; CubeMX 1. 在上节的CubeMX项目基础上进行修改 2. 两路PWM分…

2023牛客暑期多校训练营2

题目顺序不分难度 KBox 状态dp&#xff0c;因为每个棋子只能移动到 i-1 到 i1的位置&#xff0c;所以直接用4个状态表示棋子在哪 f[i][0] 表示前i个位置中&#xff0c;i-1到i1都没有棋子 f[i][1] 表示前i个位置中&#xff0c;i-1有棋子 f[i][2] 表示前i个位置中&#xff0…

Autosar - PDUR简介与配置

文章目录 一、PDUR是什么二、不同报文类型的信号流ECUC(EcucPduCollection)三、时序图CanIfs之间的路由CanIf与Com之间的路由CanTp通道间的路由一、PDUR是什么 PDU Router(路由器)在本文将简称为PduR,在AUTOSAR的架构中,通信部份中很重要的一个模块就是PduR,它能将IPdu…

C++: day6

1 思维导图 2 顺序栈模板和顺序队列模板 #include <iostream>using namespace std;template <typename T> class My_stack { private:T *ptr; //指向堆区空间int top; //记录栈顶元素public://无参构造My_stack():ptr(new T[10]), top(-1){}//有参构造My_sta…

ROS-Moveit机械臂追踪二维码(四)

ROS-Moveit机械臂追踪二维码(四) 在仿真环境增加相机 <gazebo reference"camera_depth_frame"><sensor name"camera1" type"depth"><always_on>true</always_on><update_rate>20.0</update_rate><came…

多路选择器设计实现

文章目录 一、多路选择器二、二选一多路选择器三、四选一多路选择器设计 一、多路选择器 多路选择器是数据选择器的别称。在多路数据传送过程中&#xff0c;能够根据需要将其中任意一路选出来的电路&#xff0c;叫做数据选择器&#xff0c;也称多路选择器或多路开关。 二、二…

【从删库到跑路】MySQL数据库的索引(一)——索引的结构(BTree B+Tree Hash),语法等

&#x1f38a;专栏【MySQL】 &#x1f354;喜欢的诗句&#xff1a;更喜岷山千里雪 三军过后尽开颜。 &#x1f386;音乐分享【如愿】 &#x1f970;欢迎并且感谢大家指出小吉的问题 文章目录 &#x1f354;概述&#x1f354;索引结构⭐B-Tree多路平衡查找树&#x1f3f3;️‍&a…

【分布式事务】CAP定理和Base理论

文章目录 1、事务的ACID原则2、分布式服务案例3、CAP定理4、Base理论5、分布式事务模型 1、事务的ACID原则 所有的事务都要满足ACID原则&#xff0c;在单体架构中&#xff0c;只有一个服务&#xff0c;这个服务访问一个数据库&#xff0c;场景简单。基于数据库本身的特性&…

React 组件使用

React 组件是一个 js 函数&#xff0c;函数可以添加 jsx 标记 当前页使用组件&#xff0c;基本使用 注意&#xff1a;组件的名称&#xff0c;第一个字母一定要大写&#xff0c;否则会报错 import { createRoot } from "react-dom/client"; import "./index.c…

深度学习(30)—— DeformableDETR(1)

深度学习&#xff08;30&#xff09;—— DeformableDETR&#xff08;1&#xff09; 原本想在一篇文章中就把理论和debug的过程都呈现&#xff0c;但是发现内容很多&#xff0c;所以就分开两篇&#xff0c;照常先记录理论学习过程&#xff0c;然后是实践过程。 注&#xff1a;…

Flutter学习—— Vscode创建项目

目录 一、Vscode创建项目 二、补充五种项目类型 Application: Module 模块开发&#xff0c; Package开发 Plugin 插件开发 Skeleton 骨架开发 一、Vscode创建项目 1.快捷键 CtrlShiftP 打开命令面板&#xff0c;选择新项目 2.选择需要开发的项目类型 Application 应用开…

勾股dev部署

1.克隆项目 项目的地址&#xff1a; https://gitee.com/gouguopen/dev?_fromgitee_search#-%E5%BC%80%E6%BA%90%E5%8A%A9%E5%8A%9B 可以采用git clone https://gitee.com/gouguopen/dev.git 或者使用下载压缩包的形式 2.进入项目的根目录 cd gougudev 3.下载php依赖 需要…

三种策略改进的沙猫群优化算法(MSCSO),与白鲸、蜣螂、麻雀等多种算法进行比较,MATLAB代码...

沙猫群优化算法(sand cat swarm optimiza⁃ tion,SCSO)是 2022年提出的元启发式优化算法&#xff0c;该算法灵感来源于沙猫的捕食行为&#xff0c;沙猫群会通过搜索阶段和捕食阶段获得食物。其中算法额外使用自适应的rG和R以达到搜索阶段和捕食阶段的无缝 切换。该算法具有寻优…

刷题日记09《图论基础》

图的存储结构 对于图结构而言&#xff0c;常见的存储结构主要有两种&#xff1a;邻接表和邻接矩阵&#xff1a; 邻接表很直观&#xff0c;我把每个节点 x 的邻居都存到一个列表里&#xff0c;然后把 x 和这个列表关联起来&#xff0c;这样就可以通过一个节点 x 找到它的所有相邻…

java 8树结构返回前端

接口&#xff1a; EntityResult getOrgReal(Map<String, Object> mapParam); 实现类&#xff1a; PMethodHandle(runMethodName "TQmsZjxmzbImpl.getOrgReal", timeout 600) Override public EntityResult getOrgReal(Map<String, Object> mapParam…

vs2015 工程组织与动态加载

10.Visual Studio动态加载_哔哩哔哩_bilibili 1.工程组织 ① researcher.cpp #include "nn/nn.h"#include "nn/factory.h" #include "nn/factory_impl/factory_impl.h"#include <iostream>int main() {int ret 0;factory_i* fct new f…