【LeetCode热题100】打卡第42天:滑动窗口最大值搜索二维矩阵II

news2025/1/12 13:12:42

文章目录

  • 【LeetCode热题100】打卡第42天:滑动窗口最大值&搜索二维矩阵II
    • ⛅前言
  • 滑动窗口最大值
    • 🔒题目
    • 🔑题解
  • 搜索二维矩阵II
    • 🔒题目
    • 🔑题解

【LeetCode热题100】打卡第42天:滑动窗口最大值&搜索二维矩阵II

⛅前言

大家好,我是知识汲取者,欢迎来到我的LeetCode热题100刷题专栏!

精选 100 道力扣(LeetCode)上最热门的题目,适合初识算法与数据结构的新手和想要在短时间内高效提升的人,熟练掌握这 100 道题,你就已经具备了在代码世界通行的基本能力。在此专栏中,我们将会涵盖各种类型的算法题目,包括但不限于数组、链表、树、字典树、图、排序、搜索、动态规划等等,并会提供详细的解题思路以及Java代码实现。如果你也想刷题,不断提升自己,就请加入我们吧!QQ群号:827302436。我们共同监督打卡,一起学习,一起进步。
博客主页💖:知识汲取者的博客
LeetCode热题100专栏🚀:LeetCode热题100

Gitee地址📁:知识汲取者 (aghp) - Gitee.com

题目来源📢:LeetCode 热题 100 - 学习计划 - 力扣(LeetCode)全球极客挚爱的技术成长平台

PS:作者水平有限,如有错误或描述不当的地方,恳请及时告诉作者,作者将不胜感激

滑动窗口最大值

🔒题目

原题链接:239.滑动窗口最大值

image-20230721101215009

🔑题解

  • 解法一:递减队列

    所谓的递减队列就是队头到队尾的元素按照从大到小的顺序进行排序的

    算法的核心步骤:

    1. 添加元素,要保障单调队列中的元素是递减的,由于添加元素是在队尾进行的,所以要求队列中其他元素都要比它大
    2. 移除元素,由于移除元素是在队头进行的,如果当前元素是最大值,需要移除单调队列的队头元素(队头元素就是当前最大值)

    对于这种题目我现在也不是一开始就没有思路了,一下就想到肯定要使用 递减队列 ,但是目前实现起来还是有一点困难,经过不断的debug调试,然后再不断优化代码的语句和逻辑判断,最终还是实现了,现在我就来说说我实现的思路吧:我们①首先需要构建两个队列,一个队列(可以是普通队列)用于存储滑动窗口中的元素,一个队列(只能是双端队列)用于记录当前窗口最大值,②这个双端队中的元素是递减的,这样能够保障队尾元素总是当前最大元素,我们要获取当前最大元素,只需要获取队尾元素即可③移除元素时,如果发现移除的元素是当前最大值,需要移除双端队列的队尾元素,这里不罗嗦了,直接画图吧

    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-m8f6nOFf-1690024629049)(https://gitee.com/aghp/typora-img/raw/master/csdn/202307221916698.gif)]

    本题可以参考:【LeetCode热题100】打卡第35天:最小栈

    import java.util.Deque;
    import java.util.LinkedList;
    
    /**
     * @author ghp
     * @title
     */
    public class Solution {
        public int[] maxSlidingWindow(int[] nums, int k) {
            int[] ans = new int[nums.length - k + 1];
            DescQueue queue = new DescQueue();
            // 初始化窗口
            for (int i = 0; i < k; i++) {
                queue.add(nums[i]);
            }
            int j = 0;
            ans[j++] = queue.getMax();
            // 向右滑动窗口
            for (int i = k; i < nums.length; i++) {
                queue.remove();
                queue.add(nums[i]);
                ans[j++] = queue.getMax();
            }
            return ans;
        }
    }
    
    class DescQueue {
        private Deque<Integer> queue;
        private Deque<Integer> maxQueue;
    
        public DescQueue() {
            this.queue = new LinkedList<>();
            this.maxQueue = new LinkedList<>();
        }
    
        /**
         * 新增元素到队列尾部
         *
         * @param val
         */
        public void add(int val) {
            queue.offer(val);
            while (!maxQueue.isEmpty() && maxQueue.peekLast() < val) {
                // 新增元素大于maxQueue队尾元素,不符合递减队列的要求
                // 需要移除队尾元素,直到maxQueue符合递减队列为止
                maxQueue.pollLast();
            }
            // 新增元素大于等于队尾元素,符合递增队列,直接添加到队尾
            maxQueue.offer(val);
        }
    
        /**
         * 移除队列头部元素
         */
        public void remove() {
            int val = queue.poll();
            if (val == maxQueue.peek()) {
                // 移除的队头元素是当前最大值,则需要更新maxQueue
                maxQueue.poll();
            }
        }
    
        /**
         * 获取当前队列中最大元素
         *
         * @return
         */
        public int getMax() {
            // maxQueue的头部元素即为当前最大值,直接返回即可
            return maxQueue.peek();
        }
    }
    

    复杂度分析:

    • 时间复杂度: O ( n ) O(n) O(n)
    • 空间复杂度: O ( n ) O(n) O(n)

    其中 n n n 为数组中元素的个数

    这里需要了解一下队列的几个常用API,不要搞混了,队列是队尾进队头出,队尾操作有:offerpollLastpeekLastgetLast;队头操作有:pollpeekelementgetFirst

    代码优化:空间优化

    前面我们使用了两个队列,一个队列存储窗口中的元素,一个队列记录当前最大值,我们可以发现对于本题,我们其实可以发现我们只需要知道当前窗口中的最大值即可,并不需要去记录当前窗口中所有的元素,所以这里我们可以对上面的代码进行一个改造,从而省略一个队列的开销,从而一定程度降低空间复杂度,那么我们该如何实现呢,这里给出主要思路:

    1. 添加元素,要保障单调队列中的元素是递减的,由于添加元素是在队尾进行的,所以要求队列中其他元素都要比它大
    2. 移除元素,我们不必像之前一样直接移除左边界元素,但是我们队列中存储的数组的索引,我们可以换一种思路,只有当最大值被移除时,才更新递减队列(DescQueue)

    总的思路还是和上一题大差不差的,空间复杂度没有降低,但是减少了内存占用

    备注:优化参考LeetCode官方题解

    import java.util.Deque;
    import java.util.LinkedList;
    
    /**
     * @author ghp
     * @title
     */
    public class Solution {
        public int[] maxSlidingWindow(int[] nums, int k) {
            int[] ans = new int[nums.length - k + 1];
            DescQueue queue = new DescQueue();
            // 初始化窗口
            for (int i = 0; i < k; i++) {
                queue.add(nums, i);
            }
            ans[0] = nums[queue.getMax()];
            // 向右滑动窗口
            for (int i = k; i < nums.length; i++) {
                queue.remove(i - k);
                queue.add(nums, i);
                ans[i - k + 1] = nums[queue.getMax()];
            }
            return ans;
        }
    }
    
    class DescQueue {
        private Deque<Integer> maxQueue;
    
        public DescQueue() {
            this.maxQueue = new LinkedList<>();
        }
    
        /**
         * 新增元素到队列尾部
         *
         * @param arr
         * @param i
         */
        public void add(int[] arr, int i) {
            while (!maxQueue.isEmpty() && arr[i] > arr[maxQueue.peekLast()]) {
                // 新增元素大于maxQueue队尾元素,不符合递减队列的要求
                // 需要移除队尾元素,直到maxQueue符合递减队列为止
                maxQueue.pollLast();
            }
            // 新增元素大于等于队尾元素,符合递增队列,直接添加到队尾
            maxQueue.offer(i);
        }
    
        /**
         * 移除队列头部元素
         */
        public void remove(int i) {
            while (!maxQueue.isEmpty() && maxQueue.peek() <= i) {
                // 队头元素的索引已经超出了左边界,直接移除(队头元素已过期)
                maxQueue.poll();
            }
        }
    
        /**
         * 获取当前队列中最大元素
         *
         * @return
         */
        public int getMax() {
            // maxQueue的头部元素即为当前最大值,直接返回即可
            return maxQueue.peek();
        }
    }
    
  • 解法二:优先队列

    优先队列可能比前面的单调队列还要简单很多,思路也超级简单,这里就简单讲解一下:

    1. 构造优先队列(这一步是核心步骤),我们创建一个优先队列,队列中的元素是一个数组,数组的第一个元素是添加的nums数组的值,第二个元素是nums数组值对应的索引
    2. 添加元素,直接添加即可,优先队列底层会通过维护一个大根堆实现降序排序,即队头元素到队尾元素的值从大到小排序

    其实说白了优先队列本质也是一个单调队列思想,只是这个单调对了不需要我们自己维护,相较于解法一,本方法就简单太多了

    import java.util.PriorityQueue;
    
    /**
     * @author ghp
     * @title
     */
    public class Solution {
        public int[] maxSlidingWindow(int[] nums, int k) {
            int[] ans = new int[nums.length - k + 1];
            // 创建一个优先队列,并且根据数组第一个元素进行降序排列,第一个元素是值,第二个元素是索引
            PriorityQueue<int[]> pq = new PriorityQueue<>((a, b) -> b[0] - a[0]);
            // 初始化窗口
            for (int i = 0; i < k; i++) {
                pq.offer(new int[]{nums[i], i});
            }
            int j = 0;
            ans[j++] = pq.peek()[0];
            // 向右滑动窗口
            for (int i = k; i < nums.length; i++) {
                while (!pq.isEmpty() && pq.peek()[1] <= i - k) {
                    // 队头元素的索引已经超出了左边界,直接移除(队头元素已过期)
                    pq.poll();
                }
                pq.offer(new int[]{nums[i], i});
                ans[j++] = pq.peek()[0];
            }
    
            return ans;
        }
    }
    

    复杂度分析:

    • 时间复杂度: O ( n ) O(n) O(n)
    • 空间复杂度: O ( n l o g k ) O(nlogk) O(nlogk)

    其中 n n n 为数组中元素的个数, k k k是窗口的大小

搜索二维矩阵II

🔒题目

原题链接:240.搜索二维矩阵II

image-20230722181524442

🔑题解

  • 解法一:暴力枚举(能过)

    class Solution {
        public boolean searchMatrix(int[][] matrix, int target) {
            for (int[] row : matrix) {
                for (int element : row) {
                    if (element == target) {
                        return true;
                    }
                }
            }
            return false;
        }
    }
    

    复杂度分析

    • 时间复杂度: O ( m n ) O(mn) O(mn)
    • 空间复杂度: O ( 1 ) O(1) O(1)

    其中m是行,n是列

  • 解法二:二分查找

    二分查找的简单应用,这里就不展开讲了,唯一需要注意的就是边界问题,对于边界问题的判断,实在不会判断的,有两种选择,一种是直接举例列出边界条件,一种是记口诀,像这种经典的算法,一般都有前辈总结的口诀,但是我还是比较推荐使用距离列出边界条件,记忆口诀这个东西太死了,失去了算法本身的意义,算法不是为了死记硬背,而是在于理解

    此外和这个题目相似的题还有很多,可以直接搜索关键词:二分查找

    /**
     * @author ghp
     * @title
     */
    class Solution {
        public boolean searchMatrix(int[][] matrix, int target) {
            int row = matrix.length;
            for (int i = 0; i < row; i++) {
                Integer result = binarySearch(matrix[i], target);
                if (result != null) {
                    return true;
                }
            }
            return false;
        }
    
        private Integer binarySearch(int[] arr, int target) {
            int l = 0, r = arr.length-1;
            while (l <= r) {
                int mid = (r - l) / 2 + l;
                if (target == arr[mid]) {
                    return mid;
                } else if (target < arr[mid]) {
                    r = mid - 1;
                } else {
                    l = mid + 1;
                }
            }
            return null;
        }
    }
    

    复杂度分析:

    • 时间复杂度: O ( m l o g n ) O(mlogn) O(mlogn)
    • 空间复杂度: O ( 1 ) O(1) O(1)

    其中 n n n 为数组中元素的个数

  • 解法三:Z字形查找

    这个解法来自LeetCode官网,真TM强,没想到啊啊啊啊😫

    核心思路:充分利用层与层之间的排序关系,从右上角开始,不断比较当前坐标的值和目标值,缩小搜索范围,每一次比较都能缩小一行或一列的数据

    PS:能画一个动图就好了,我相信大家一看就懂(大家脑补一下吧,画图太费时间了),这个解法理解起来并不难,就是想不到啊

    class Solution {
        public boolean searchMatrix(int[][] matrix, int target) {
            int m = matrix.length, n = matrix[0].length;
            int row = 0, col = n - 1;
            while (row < m && col >= 0) {
                if (matrix[row][col] == target) {
                    return true;
                }
                if (matrix[row][col] > target) {
                    // 目标值比当前坐标值要小,则向左逼近
                    --col;
                } else {
                    // 目标值比当前坐标值要大,则向下逼近
                    ++row;
                }
            }
            return false;
        }
    }
    

    复杂度分析

    • 时间复杂度: O ( m + n ) O(m+n) O(m+n),每次都会缩小一行或一列的数据,所以最坏情况,时间复杂度是 O ( m + n ) O(m+n) O(m+n),也就是目标值在左下角
    • 空间复杂度: O ( 1 ) O(1) O(1)

    其中m是行,n是列

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/781977.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

装箱问题(背包问题)

题目描述 有一个箱子容量为v(正整数&#xff0c;o≤v≤20000)&#xff0c;同时有n个物品(o≤n≤30)&#xff0c;每个物品有一个体积 (正整数)。要求从 n 个物品中&#xff0c;任取若干个装入箱内&#xff0c;使箱子的剩余空间为最小。 输入格式 第一行&#xff0c;一个整…

js函数增强

目录 函数的属性arguments将arguments转换成数组rest 纯函数柯里化函数自动实现函数柯里化组合函数自动实现组合化with与evalwitheval 严格模式严格模式的限制 函数的属性 函数其实也是一个对象 是对象就会有对应的方法与属性 以下是几个常用属性 name name属性主要用于访问给…

vue 富文本图片回显

富文本上传 <el-form-item label"服务费打款银行回单" prop"bankreceipt"> <!-- <ImageUpload--> <!-- :value"form.bankreceiptUrl"--> <!-- :fileType"fileType"--> <…

【解决方案】视频传输方案怎样选择适用的WiFi模块

工作环境中&#xff0c;我们接触的最多的是有线传输&#xff0c;但是这个会因为转换接口、传输距离等原因受到一些限制&#xff0c;而无线传输不会&#xff0c;不需要布线&#xff0c;不限制接口&#xff0c;传输距离也由于有线传输&#xff0c;这也是物联网广泛使用无线通信技…

了解下余弦相似度在文本处理中的应用

大家好啊&#xff0c;我是董董灿&#xff01; 昨天写了一篇介绍词向量的文章&#xff1a;5分钟搞懂什么是词嵌入&#xff0c;里面说到&#xff1a;通过把文本转换为词向量&#xff0c;就可以十分方便的计算两者之间的关系&#xff0c;看看哪两个单词更为相近。 比如有四个单词…

AtCoder Beginner Contest 288 F. Integer Division(递推+前缀和优化dp)

题目 给定一个n(2<n<2e5)位的数字串X&#xff0c; 可以将X划分成若干段&#xff0c;得分为每一段的乘积&#xff08;可以不分割&#xff0c;此时得分为X&#xff09; 求所有种分法的得分之和&#xff0c;答案对998244353取模 思路来源 洛谷题解 [ABC288F] Integer …

【PostgreSQL内核学习(十)—— 查询执行(可优化语句执行)】

可优化语句执行 概述物理代数与处理模型物理操作符的数据结构执行器的运行 声明&#xff1a;本文的部分内容参考了他人的文章。在编写过程中&#xff0c;我们尊重他人的知识产权和学术成果&#xff0c;力求遵循合理使用原则&#xff0c;并在适用的情况下注明引用来源。 本文主要…

SAP客制化区域菜单和IMG配置清单

1. 自定义区域菜单 事务代码 SE43&#xff0c;操作如下 添加菜单对象 展示效果 输入区域菜单名称并回车&#xff0c;效果如下 2. 自定义IMG配置 事务代码 SIMGH IMG structure 示例-事务代码入口 示例-表格维护入口 示例-自定义代码控制对象 需要创建dummy表并设置表维护 页面设…

平头哥TH5120 BeagleV-Ahead开机系统软件使用体验

等了许久&#xff0c;Beagle 社区官网终于上线了BeagleV-Ahead 的主页 网址 https://beagleboard.org/beaglev-ahead &#xff0c;我们的系统软件评测将会以这个官方主页为出发点 &#xff0c;进行一系列的系统软件功能等操作演示&#xff0c;因官网没有中文页面&#xff0c;我…

【雕爷学编程】Arduino动手做(168)---ATTINY85迷你USB开发板2

37款传感器与执行器的提法&#xff0c;在网络上广泛流传&#xff0c;其实Arduino能够兼容的传感器模块肯定是不止这37种的。鉴于本人手头积累了一些传感器和执行器模块&#xff0c;依照实践出真知&#xff08;一定要动手做&#xff09;的理念&#xff0c;以学习和交流为目的&am…

瑞吉外卖开发笔记 二

1、完善登录功能 问题分析 前面我们已经完成了后台系统的员工登录功能开发&#xff0c;但是还存在一个问题:用户如果不登录&#xff0c;直接访问系统首页面&#xff0c;照样可以正常访问。 这种设计并不合理&#xff0c;我们希望看到的效果应该是&#xff0c;只有登录成功后…

JVM运行时数据区——字符串常量池位置的调整

在JDK6及之前&#xff0c;使用永久代来实现方法区&#xff0c;字符串常量池(StringTable)是在永久代(方法区)中的&#xff0c;但是方法区的回收效率不高&#xff0c;在Full GC时才会回收。 在JDK7中&#xff0c;将字符串常量池转移到了堆中&#xff0c;分配在年轻代和老年代中。…

ROS——roslaunch传参注意

本文就总结自己最近开发项目中出现的一些roslaunch有关传参的注意事项说明一下&#xff0c;以免下次有犯错 roslaunch 文件传入到.cpp 这里我采用传参比较简单的方式&#xff0c;还有其他方式&#xff0c;不过这种最为简便 nh.param<xxx>("roslaunch中的名字,如A…

基于 H5 的画图工具

完整资料进入【数字空间】查看——baidu搜索"writebug" 第一章 绪论 1.1 研究的背景 计算机图形学是随着计算机及其外围设备而产生和发展起来的。它是近代计算机科学 与雷达电视及图象处理技术的发展汇合而产生的硕果。在造船、航空航天、汽车、电子、 机械、土建工…

Spring 容器

Spring 容器 两个核心接口&#xff1a;BeanFactory 和 ApplicationContext&#xff08;是BeanFactory的子接口&#xff09;&#xff0c;生成Bean实例并管理Bean的工厂 Bean 对象 Spring管理的基本单位&#xff0c;在基于Spring应用中&#xff0c;所有的组件都可以理解为是一…

【前端|CSS系列第4篇】CSS布局之网格布局

前言 最近在做的一个项目前台首页有一个展示词条的功能&#xff0c;每一个词条都以一个固定大小的词条卡片进行展示&#xff0c;要将所有的词条卡片展示出来&#xff0c;大概是下面这种布局 每一行的卡片数目会随着屏幕大小自动变化&#xff0c;并且希望整个卡片区域周围不要…

【CSDN竞赛】练习题(练手题)及解析(含代码+注释):小玉家的电费;饿龙咆哮-逃离城堡;收件邮箱;寻找宝藏山

订阅专栏,学习更多干货知识! 为想要参与CSDN竞赛的朋友提供几道练手题目及解决方案。含有题目描述以及不同编程语言的解决方案。 💿目录 🏮一、题目一:小玉家的电费📂1.1 题目描述📂1.2 示例代码🏮二、题目二:饿龙咆哮-逃离城堡📂2.1 题目描述📂2.2 示例代码…

基于PySceneDetect的视频场景变换侦测与处理

剪映中集成了一个智能镜头分割的功能,其实是基于python的三方库PySceneDetect来实现的,主要用于对视频进行分析,寻找场景切换或剪辑。 不过一个一个处理起来比较麻烦,这里介绍一个python的三方库实现自动化批量处理。 文章目录 PySceneDetect主要功能特征PySceneDetect的安…

股票基金入门知识

1.开盘价和收盘价如何产生 时间9:30-11:30 13:00-15:00 集合竞价时间段&#xff1a;9:15-9:25 以此产生开盘价 最后集中竞价时间段&#xff1a;深市14:57-15:00 &#xff0c;以此产生收盘价。 沪市则采用最后一分钟加权得出收盘价影响股价的因素 市场投资情绪&#xff0c;宏观…

Java实现字典树单词插入、查找以及删除

文章目录 前言题目思路代码实现测试用例结果输出 结语 前言 字典树又称为前缀树或Trie树&#xff0c;是处理字符串常见的数据结构。 字典树是一种树形结构&#xff0c;优点是利用字符串的公共前缀来节约存储空间&#xff0c;比如插入"abc"、“abcd”、 “abd”、“…