数据分享|R语言逻辑回归、Naive Bayes贝叶斯、决策树、随机森林算法预测心脏病...

news2024/11/24 19:26:09

全文链接:http://tecdat.cn/?p=23061

这个数据集(查看文末了解数据免费获取方式)可以追溯到1988年,由四个数据库组成。克利夫兰、匈牙利、瑞士和长滩。"目标 "字段是指病人是否有心脏病。它的数值为整数,0=无病,1=有病点击文末“阅读原文”获取完整代码数据

数据集信息:

目标:

主要目的是预测给定的人是否有心脏病,借助于几个因素,如年龄、胆固醇水平、胸痛类型等。

我们在这个问题上使用的算法是:

  • 二元逻辑回归

  • Naive Bayes算法

  • 决策树

  • 随机森林

数据集的描述:

该数据有303个观察值和14个变量。每个观察值都包含关于个人的以下信息。

  • 年龄:- 个人的年龄,以年为单位

  • sex:- 性别(1=男性;0=女性)

  • cp - 胸痛类型(1=典型心绞痛;2=非典型心绞痛;3=非心绞痛;4=无症状)。

  • trestbps--静息血压

  • chol - 血清胆固醇,单位:mg/dl

  • fbs - 空腹血糖水平>120 mg/dl(1=真;0=假)

  • restecg - 静息心电图结果(0=正常;1=有ST-T;2=肥大)

  • thalach - 达到的最大心率

  • exang - 运动诱发的心绞痛(1=是;0=否)

  • oldpeak - 相对于静止状态,运动诱发的ST压低

  • slope - 运动时ST段峰值的斜率(1=上斜;2=平坦;3=下斜)

  • ca - 主要血管的数量(0-4),由Flourosopy着色

  • 地中海贫血症--地中海贫血症是一种遗传性血液疾病,会影响身体产生血红蛋白和红细胞的能力。1=正常;2=固定缺陷;3=可逆转缺陷

  • 目标--预测属性--心脏疾病的诊断(血管造影疾病状态)(值0=<50%直径狭窄;值1=>50%直径狭窄)

在Rstudio中加载数据

heart<-read.csv("heart.csv",header = T)

header = T意味着给定的数据有自己的标题,或者换句话说,第一个观测值也被考虑用于预测。

head(heart)

f498662fd8389bcd92e9a9bd2eb48063.png

当我们想查看和检查数据的前六个观察点时,我们使用head函数。

tail(heart)

3b9036938c2079ccfe374f8c06011c46.png

显示的是我们数据中最后面的六个观察点

colSums(is.na(heart))

4ac7c8da5113812ecf813bdce65cd50c.png

这个函数是用来检查我们的数据是否包含任何NA值。
如果没有发现NA,我们就可以继续前进,否则我们就必须在之前删除NA。

检查我们的数据结构

str(heart)

805483d8d062e8b386b37e1d57f9bce7.png

查看我们的数据摘要

summary(heart)

8561365f885caca34c671d02fdc196bb.png

通过观察以上的总结,我们可以说以下几点

  • 性别不是连续变量,因为根据我们的描述,它可以是男性或女性。因此,我们必须将性别这个变量名称从整数转换为因子。

  • cp不能成为连续变量,因为它是胸痛的类型。由于它是胸痛的类型,我们必须将变量cp转换为因子。

  • fbs不能是连续变量或整数,因为它显示血糖水平是否低于120mg/dl。

  • restecg是因子,因为它是心电图结果的类型。它不能是整数。所以,我们要把它转换为因子和标签。

  • 根据数据集的描述,exang应该是因子。心绞痛发生或不发生。因此,将该变量转换为因子。

  • 斜率不能是整数,因为它是在心电图中观察到的斜率类型。因此,我们将变量转换为因子。

  • 根据数据集的描述,ca不是整数。因此,我们要将该变量转换为因子。

  • thal不是整数,因为它是地中海贫血的类型。因此,我们将变量转换为因子。

  • 目标是预测变量,告诉我们这个人是否有心脏病。因此,我们将该变量转换为因子,并为其贴上标签。

根据上述考虑,我们对变量做了一些变化

#例如
sex<-as.factor(sex)
levels(sex)<-c("Female","Male")

检查上述变化是否执行成功

str(heart)

f50b6dfbbbdafc8983a13f5c148acc18.png

summary(heart)

cf3ff407ddc365176a0fee5be73c4576.png

EDA

EDA是探索性数据分析(Exploratory Data Analysis)的缩写,它是一种数据分析的方法/哲学,采用各种技术(主要是图形技术)来深入了解数据集。

对于图形表示,我们需要库 "ggplot2"

library(ggplot2)
ggplot(heart,aes(x=age,fill=target,color=target)) + geom_histogram(binwidth = 1,color="black") + labs(x = "Age",y = "Frequency", title = "Heart Disease w.r.t. Age")

86b053ef312fe1409044bb9e7434ffbe.png

我们可以得出结论,与60岁以上的人相比,40至60岁的人患心脏病的概率最高。

table <- table(cp)

pie(table)

09b18be315a3618da2be8e443badf160.png

我们可以得出结论,在所有类型的胸痛中,在个人身上观察到的大多数是典型的胸痛类型,然后是非心绞痛。


点击标题查阅往期内容

ffa728ad7351ed9828b9a38c07ea7f9a.jpeg

R语言用逻辑回归、决策树和随机森林对信贷数据集进行分类预测

outside_default.png

左右滑动查看更多

outside_default.png

01

21104dfe8000b6550d9d012e4a8cefc9.png

02

e25436121a4d687cd186484c3575ef62.png

03

21f6f472166ca4bcc581fd03c5969af4.png

04

01fb713ec404e9112ccbd4c7f3a7b8e6.png

执行机器学习算法

Logistic回归

首先,我们将数据集分为训练数据(75%)和测试数据(25%)。

set.seed(100) 
#100用于控制抽样的permutation为100. 
index<-sample(nrow(heart),0.75*nrow(heart))

在训练数据上生成模型,然后用测试数据验证模型。

glm(family = "binomial")
# family = " 二项式 "意味着只包含两个结果。

为了检查我们的模型是如何生成的,我们需要计算预测分数和建立混淆矩阵来了解模型的准确性。

pred<-fitted(blr)
# 拟合只能用于获得生成模型的数据的预测分数。

74697cef7534147eede8930bf94c2548.png

我们可以看到,预测的分数是患心脏病的概率。但我们必须找到一个适当的分界点,从这个分界点可以很容易地区分是否患有心脏病。

为此,我们需要ROC曲线,这是一个显示分类模型在所有分类阈值下的性能的图形。它将使我们能够采取适当的临界值。

pred<-prediction(train$pred,train$target)
perf<-performance(pred,"tpr","fpr")
plot(perf,colorize = T,print.cutoffs.at = seq(0.1,by = 0.1))

8917caedde7937eb62094421de8ae7db.png

通过使用ROC曲线,我们可以观察到0.6具有更好的敏感性和特异性,因此我们选择0.6作为区分的分界点。

pred1<-ifelse(pred<0.6,"No","Yes")

440aeb0473f21504fdca26d726cb9c08.png

# 训练数据的准确性
acc_tr

dddb1c07f3522f74c9eca1dee8f23414.png

从训练数据的混淆矩阵中,我们知道模型有88.55%的准确性。

现在在测试数据上验证该模型

predict(type = "response")
## type = "response "是用来获得患有心脏病的概率的结果。
head(test)

71cb29935dd2553573e87da0e87b5062.png

我们知道,对于训练数据来说,临界点是0.6。同样地,测试数据也会有相同的临界点。

confusionMatrix((pred1),target)

856d17521e84b491b487ec82333bc8f3.png

#测试数据的准确性.

4736a4e8f050d19fafceb2504699fb2c.png

检查我们的预测值有多少位于曲线内

auc@y.values

eeeef2fdb6f895d244bd19f9027af449.png

我们可以得出结论,我们的准确率为81.58%,90.26%的预测值位于曲线之下。同时,我们的错误分类率为18.42%。

Naive Bayes算法

在执行Naive Bayes算法之前,需要删除我们在执行BLR时添加的额外预测列。

#naivebayes模型
nB(target~.)

用训练数据检查模型,并创建其混淆矩阵,来了解模型的准确程度。

predict(train)
confMat(pred,target)

33f857b113fb9307a841333a643401b3.png

85a23a4fcc466bc6ed88be509aee1044.png

我们可以说,贝叶斯算法对训练数据的准确率为85.46%。

现在,通过预测和创建混淆矩阵来验证测试数据的模型。

Matrix(pred,target)

6e2bfe7b1308328ca3756ea4fdb2432a.png

84e40d5737732ae39dc4c200187fd672.png

我们可以得出结论,在Naive Bayes算法的帮助下生成的模型准确率为78.95%,或者我们也可以说Naive Bayes算法的错误分类率为21.05%。

决策树

在实施决策树之前,我们需要删除我们在执行Naive Bayes算法时添加的额外列。

train$pred<-NULL

rpart代表递归分区和回归树

当自变量和因变量都是连续的或分类的时候,就会用到rpart。

rpart会自动检测是否要根据因变量进行回归或分类。

实施决策树

plot(tree)

640b8c748a2450837b9f95da20e52f81.png

在决策树的帮助下,我们可以说所有变量中最重要的是CP、CA、THAL、Oldpeak。

让我们用测试数据来验证这个模型,并找出模型的准确性。

conMat(pred,targ)

25f514f6ae078b7eac007116a628e022.png

450dfb8ee7d31b5b9d4a3c956eb21392.png

我们可以说,决策树的准确率为76.32%,或者说它的错误分类率为23.68%。

随机森林

在执行随机森林之前,我们需要删除我们在执行决策树时添加的额外预测列。

test$pred<-NULL

在随机森林中,我们不需要将数据分成训练数据和测试数据,我们直接在整个数据上生成模型。为了生成模型,我们需要使用随机森林库

# Set.seed通过限制permutation来控制随机性。

set.seed(100)
model_rf<-randomForest(target~.,data = heart)
model_rf

66368c390dcd299f76461b713e57ba47.png

在图上绘制出随机森林与误差的关系。

plot(model_rf)

723a1f9622cacaf7676915a5a86ba22a.png

红线代表没有心脏病的MCR,绿线代表有心脏病的MCR,黑线代表总体MCR或OOB误差。总体误差率是我们感兴趣的,结果不错。

结论

在进行了各种分类技术并考虑到它们的准确性后,我们可以得出结论,所有模型的准确性都在76%到84%之间。其中,随机森林的准确率略高,为83.5%。

数据获取

在下面公众号后台回复“心脏病数”,可免费获取完整数据。

3a003cd479284cbddc7fc8fe988a2a37.jpeg

本文摘选R语言逻辑回归、Naive Bayes贝叶斯、决策树、随机森林算法预测心脏病,点击“阅读原文”获取全文完整资料。

a155009f1319e5135972de8fac5f7e15.jpeg

本文中的心脏病数据分享到会员群,扫描下面二维码即可加群!

7b7b8baddf1687ad7db1c19d97763ac2.png

1abce8a3de3002f310df8a508e121d83.jpeg

79d06d6570e30de355bae2fb10a6f249.png

点击标题查阅往期内容

R语言逻辑回归logistic模型分析泰坦尼克titanic数据集预测生还情况

R语言是否对二分连续变量执行逻辑回归

R语言用lme4多层次(混合效应)广义线性模型(GLM),逻辑回归分析教育留级调查数据

R语言随机森林RandomForest、逻辑回归Logisitc预测心脏病数据和可视化分析

R语言基于Bagging分类的逻辑回归(Logistic Regression)、决策树、森林分析心脏病患者

R语言逻辑回归(Logistic回归)模型分类预测病人冠心病风险

R语言用局部加权回归(Lowess)对logistic逻辑回归诊断和残差分析

R语言用主成分PCA、 逻辑回归、决策树、随机森林分析心脏病数据并高维可视化

R语言用线性模型进行臭氧预测:加权泊松回归,普通最小二乘,加权负二项式模型,多重插补缺失值

R语言Bootstrap的岭回归和自适应LASSO回归可视化

R语言中回归和分类模型选择的性能指标

R语言多元时间序列滚动预测:ARIMA、回归、ARIMAX模型分析

R语言用lme4多层次(混合效应)广义线性模型(GLM),逻辑回归分析教育留级调查数据

R语言计量经济学:虚拟变量(哑变量)在线性回归模型中的应用

R语言 线性混合效应模型实战案例

R语言混合效应逻辑回归(mixed effects logistic)模型分析肺癌数据

R语言如何用潜类别混合效应模型(LCMM)分析抑郁症状

R语言基于copula的贝叶斯分层混合模型的诊断准确性研究

R语言建立和可视化混合效应模型mixed effect model

R语言LME4混合效应模型研究教师的受欢迎程度

R语言 线性混合效应模型实战案例

R语言用Rshiny探索lme4广义线性混合模型(GLMM)和线性混合模型(LMM)

R语言基于copula的贝叶斯分层混合模型的诊断准确性研究

R语言如何解决线性混合模型中畸形拟合(Singular fit)的问题

基于R语言的lmer混合线性回归模型

R语言用WinBUGS 软件对学术能力测验建立层次(分层)贝叶斯模型

R语言分层线性模型案例

R语言用WinBUGS 软件对学术能力测验(SAT)建立分层模型

使用SAS,Stata,HLM,R,SPSS和Mplus的分层线性模型HLM

R语言用WinBUGS 软件对学术能力测验建立层次(分层)贝叶斯模型

SPSS中的多层(等级)线性模型Multilevel linear models研究整容手术数据

用SPSS估计HLM多层(层次)线性模型模型

f8a67f7179378bf9f6899f20fd3ec272.png

d2e0cafb8420e0c0b5bd887e7eca19e0.jpeg

cbd653d8f53436f196d74b2cef4525f0.png

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/781188.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

盖子的c++小课堂——第二十讲:动态规划

前言 中间呢其实还有两讲&#xff0c;但是那两讲太easy了&#xff0c;根本难不倒你们&#xff0c;所以&#xff0c;我索性不放了~~那我们今天讲一个比较容易的知识点——动态规划&#xff08;终于没人给我催更了&#xff01;哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈…

IOC控制反转--.net framework

IOC控制反转–.net framework 分层架构&#xff1a; 一、传统依赖倒置实现 传统工艺&#xff1a;会有依赖&#xff0c;上端全部展示细节 BaseBll baseBll new BaseBll(); baseBll.DoSomething();依赖于抽象&#xff1a;左边依赖倒置&#xff0c;面向抽象 实现类继承接口&am…

React18和React16合成事件原理(附图)

&#x1f4a1; React18合成事件的处理原理 “绝对不是”给当前元素基于addEventListener做的事件绑定&#xff0c;React中的合成事件&#xff0c;都是基于“事件委托”处理的&#xff01; 在React17及以后版本&#xff0c;都是委托给#root这个容器&#xff08;捕获和冒泡都做了…

动态规划入门第1课

1、从计数到选择 ---- 递推与DP&#xff08;动态规划&#xff09; 2、从递归到记忆 ---- 子问题与去重复运算 3、动态规划的要点 第1题 网格路1(grid1) 小x住在左下角(0,0)处&#xff0c;小y在右上角(n,n)处。小x需要通过一段网格路才能到小y家。每次&#xff0c;小x可以选…

视频基础知识

1.视频比特率 视频的比特率是指传输过程中单位时间传输的数据量。可以理解为视频的编码采样率。单位是kbps&#xff0c;即每秒千比特。视频比特率是决定视频清晰度的一个重要指标。比特率越高&#xff0c;视频越清晰&#xff0c;但数据量也会越大。比如一部100分钟的电影&#…

5.4 Bootstrap 下拉菜单(Dropdown)插件

文章目录 Bootstrap 下拉菜单&#xff08;Dropdown&#xff09;插件用法在导航栏内在标签页内 选项方法 Bootstrap 下拉菜单&#xff08;Dropdown&#xff09;插件 Bootstrap 下拉菜单 这一章讲解了下拉菜单&#xff0c;但是没有涉及到交互部分&#xff0c;本章将具体讲解下拉菜…

(链表) 剑指 Offer 58 - I. 翻转单词顺序 ——【Leetcode每日一题】

❓剑指 Offer 06. 从尾到头打印链表 难度&#xff1a;简单 输入一个链表的头节点&#xff0c;从尾到头反过来返回每个节点的值&#xff08;用数组返回&#xff09;。 示例 1&#xff1a; 输入&#xff1a;head [1,3,2] 输出&#xff1a;[2,3,1] 限制&#xff1a; 0 < 链…

自己实现数据结构,有更好的可操作性

https://leetcode.cn/problems/asteroid-collision/ 就是说&#xff0c;非得用人家写的栈不可么 stl 的 stack&#xff0c;没办法随机访问&#xff0c;用 vector 或者再不济数组&#xff0c;就好了&#xff0c;非要用 stl 的&#xff0c;就导致还得有另一个 vector 维护向左走…

多目标灰狼算法(MOGWO)的Matlab代码详细注释及难点解释(佳点集改进初始种群的MOGWO)

目录 一、外部种群Archive机制 二、领导者选择机制 三、多目标灰狼算法运行步骤 四、MOGWO的Matlab部分代码详细注释 五、MOGWO算法难点解释 5.1 网格与膨胀因子 5.2 轮盘赌方法选择每个超立方体概率 为了将灰狼算法应用于多目标优化问题,在灰狼算法中引入外部种群Archi…

Spring MVC -- 返回数据(静态页面+非静态页面+JSON对象+请求转发与请求重定向)

目录 1. 返回静态页面 2. 返回非静态页面 2.1 ResponseBody 返回页面内容 2.2 RestController ResponseBody Controller 2.3 示例:实现简单计算的功能 3. 返回JSON对象 3.1 实现登录功能&#xff0c;返回 JSON 对象 4. 请求转发(forward)或请求重定向(redirect) 4.1 请…

Day 63 : 集成学习之 AdaBoosting (1. 带权数据集)

63.1 AdaBoosting基本算法&#xff1a;先从初始训练集训练一个弱学习器&#xff0c;在根据弱学习器的表现对训练样本进行权重调整&#xff0c;经过若干轮之后&#xff0c;将得到一组分类器&#xff0c;将数据输入这组分类器后会得到一个综合且准确的的分类结果。“三个臭皮匠&a…

评论管理功能

后端 bp.get("/comment/list") def comment_list():comments CommentModel.query.order_by(CommentModel.create_time.desc()).all()comment_list []for comment in comments:comment_dict comment.to_dict()comment_list.append(comment_dict)return restful.ok…

Python模块requests基本用法

简介 Python 的 requests 模块是一个流行的第三方库&#xff0c;用于发送HTTP请求。它提供了一组简洁且易于使用的API&#xff0c;使得在Python中进行网络通信变得更加简单和灵活。 目录 1. 基本概念 1.1. HTTP 协议 1.2. GET 请求 1.3. POST 请求 1.4. get 和 post 的区别…

uniapp 小程序 评分组件

效果图&#xff1a; 1、组件&#xff1a;starsRating.vue <template><view class"stars"><image click"btnStars1" class"starsicon" :src"starsObject[0]" mode"widthFix"></image><image c…

Stream API将对象中的某一字段取出转换为list或数组

List<DevicePartMaintain> devicePartMaintainList devicePartMaintainMapper.selectDevicePartMaintainByMitId(mitId);所有id转换为List 要使用Stream流获取devicePartMaintainList中所有的id&#xff0c;您可以使用stream()方法将列表转换为流&#xff0c;然后使用…

从C语言到C++_28(红黑树RedBlackTree)概念+插入接口实现

目录 1. 红黑树的引入和简介 2. 红黑树的性质和定义 3. 红黑树的插入 3.1 调整情况一 3.2 调整情况二 3.2.1 调整情况二中的单旋变色 3.2.2 调整情况二中的双旋变色 3.3 调整情况三 3.4 红黑树插入完整代码 4. 红黑树的验证和完整代码 4.1 验证是不是搜索树&#xf…

Pytorch个人学习记录总结 07

目录 神经网络-非线性激活 神经网络-线形层及其他层介绍 神经网络-非线性激活 官方文档地址&#xff1a;torch.nn — PyTorch 2.0 documentation 常用的&#xff1a;Sigmoid、ReLU、LeakyReLU等。 作用&#xff1a;为模型引入非线性特征&#xff0c;这样才能在训练过程中…

【0基础学习python】顺序结构+条件语句+循环结构(文章后面有人生重开模拟器的相关逻辑和简单实现)

1.顺序语句 默认情况下&#xff0c;python的代码执行顺序是按照从上到下的顺序&#xff0c;依次执行的。 print(1) print(2) print(3)执行的结果一定为 1 2 3 &#xff0c;而不会出现 3 2 1 或者 1 3 2等&#xff0c;这种按照顺序执行的代码&#xff0c;我们称为顺序语句。 …

C++第六讲

思维导图 顺序栈定义成模板类 /* ---------------------------------author&#xff1a;YoungZorncreated on 2023/7/22 16:23.--------------------------------- */ #include<iostream>using namespace std;template<typename T> class my_stack { private:T *p…

Unity进阶--声音管理器学习笔记

文章目录 声音管理器 using System.Collections; using System.Collections.Generic; using UnityEngine;public class AudioManager : MyrSingletonBase<AudioManager> {//环境音private AudioSource enPlayer;//音效private AudioSource sePlayer;//音乐private Audio…