深入理解Java虚拟机(三)垃圾收集器与内存分配策略

news2025/1/23 9:23:55

Java与C++之间有一堵由内存动态分配和垃圾收集技术所围成的高墙,墙外面的人想进去,墙里面的人却想出来。

        Java内存运行时区域的各个部分,其中程序计数器、虚拟机栈、本地方法栈3个区域随线程而生,随线程而灭,栈中的栈帧随着方法的进入和退出而有条不紊地执行着出栈和入栈操作。每一个栈帧中分配多少内存基本上是在类结构确定下来时就已知的(尽管在运行期会由即时编译器进行一些优化,但在基于概念模型的讨论里,大体上可以认为是编译期可知的),因此这几个区域的内存分配和回收都具备确定性,在这几个区域内就不需要过多考虑如何回收的问题,当方法结束或者线程结束时,内存自然就跟随着回收了。

        而Java堆和方法区这两个区域则有着很显著的不确定性:一个接口的多个实现类需要的内存可能会不一样,一个方法所执行的不同条件分支所需要的内存也可能不一样,只有处于运行期间,我们才能知道程序究竟会创建哪些对象,创建多少个对象,这部分内存的分配和回收是动态的。垃圾收集器所关注的正是这部分内存该如何管理,本文后续讨论中的“内存”分配与回收也仅仅特指这一部分内存。

一、判断对象是否使用

在堆里面存放着Java世界中几乎所有的对象实例,垃圾收集器在对堆进行回收前,第一件事情就是要确定这些对象之中哪些还“存活”着,哪些已经“死去”(“死去”即不可能再被任何途径使用的对象)了。

 1.1、引用计数算法

        判断对象是否存活的算法是这样的:在对象中添加一个引用计数器,每当有一个地方引用它时,计数器值就加一;当引用失效时,计数器值就减一;任何时刻计数器为零的对象就是不可能再被使用的。

        客观地说,引用计数算法(Reference Counting)虽然占用了一些额外的内存空间来进行计数,但它的原理简单,判定效率也很高,在大多数情况下它都是一个不错的算法。但是,在Java
领域,至少主流的Java虚拟机里面都没有选用引用计数算法来管理内存,主要原因是,这个看似简单的算法有很多例外情况要考虑,必须要配合大量额外处理才能保证正确地工作,譬如单纯的引用计数就很难解决对象之间相互循环引用的问题。

        举个简单的例子,假设代码的testGC()方法:对象objA和objB都有字段instance,赋值令objA.instance=objB及objB.instance=objA,除此之外,这两个对象再无任何引用,实际上这两个对象已经不可能再被访问,但是它们因为互相引用着对方,导致它们的引用计数都不为零,引用计数算法也就无法回收它们。

1.2、可达性分析算法

        当前主流的商用程序语言(Java、C#等)的内存管理子系统,都是通过可达性分析(Reachability Analysis)算法来判定对象是否存活的。这个算法的基本思路就是通过一系列称为“GC Roots”的根对象作为起始节点集,从这些节点开始,根据引用关系向下搜索,搜索过程所走过的路径称为“引用链”(Reference Chain),如果某个对象到GC Roots间没有任何引用链相连,或者用图论的话来说就是从GC Roots到这个对象不可达时,则证明此对象是不可能再被使用的。

        如下图所示,对象object 5、object 6、object 7虽然互有关联,但是它们到GC Roots是不可达的,因此它们将会被判定为可回收的对象。

 在Java技术体系里面,固定可作为GC Roots的对象包括以下几种:

  • 在虚拟机栈(栈帧中的本地变量表)中引用的对象,譬如各个线程被调用的方法堆栈中使用到的参数、局部变量、临时变量等。
  • 在方法区中类静态属性引用的对象,譬如Java类的引用类型静态变量。
  • 在方法区中常量引用的对象,譬如字符串常量池(String Table)里的引用。
  • 在本地方法栈中JNI(即通常所说的Native方法)引用的对象。
  • Java虚拟机内部的引用,如基本数据类型对应的Class对象,一些常驻的异常对象(比如NullPointExcepiton、OutOfMemoryError)等,还有系统类加载器。
  • 所有被同步锁(synchronized关键字)持有的对象。
  • 反映Java虚拟机内部情况的JMXBean、JVMTI中注册的回调、本地代码缓存等。

        除了这些固定的GC Roots集合以外,根据用户所选用的垃圾收集器以及当前回收的内存区域不同,还可以有其他对象“临时性”地加入,共同构成完整GC Roots集合。譬如后文将会提到的分代收集和局部回收(Partial GC),如果只针对Java堆中某一块区域发起垃圾收集时(如最典型的只针对新生代的垃圾收集),必须考虑到内存区域是虚拟机自己的实现细节(在用户视角里任何内存区域都是不可见的),更不是孤立封闭的,所以某个区域里的对象完全有可能被位于堆中其他区域的对象所引用,这时候就需要将这些关联区域的对象也一并加入GC Roots集合中去,才能保证可达性分析的正确性。

        目前最新的几款垃圾收集器无一例外都具备了局部回收的特征,为了避免GC Roots包含过多对象而过度膨胀,它们在实现上也做出了各种优化处理。

1.3、再谈引用

        无论是通过引用计数算法判断对象的引用数量,还是通过可达性分析算法判断对象是否引用链可达,判定对象是否存活都和“引用”离不开关系。在JDK 1.2版之前,Java里面的引用是很传统的定义:如果reference类型的数据中存储的数值代表的是另外一块内存的起始地址,就称该reference数据是代表某块内存、某个对象的引用。这种定义并没有什么不对,只是现在看来有些过于狭隘了,一个对象在这种定义下只有“被引用”或者“未被引用”两种状态,对于描述一些“食之无味,弃之可惜”的对象就显得无能为力。譬如我们希望能描述一类对象:当内存空间还足够时,能保留在内存之中,如果内存空间在进行垃圾收集后仍然非常紧张,那就可以抛弃这些对象——很多系统的缓存功能都符合这样的应用场景。

        在JDK 1.2版之后,Java对引用的概念进行了扩充,将引用分为强引用(Strongly Re-ference)、软引用(Soft Reference)、弱引用(Weak Reference)和虚引用(Phantom Reference)4种,这4种引用强度依次逐渐减弱。

        强引用是最传统的“引用”的定义,是指在程序代码之中普遍存在的引用赋值,即类似“Object obj=new Object()”这种引用关系。无论任何情况下,只要强引用关系还存在,垃圾收集器就永远不会回收掉被引用的对象。

        软引用是用来描述一些还有用,但非必须的对象。只被软引用关联着的对象,在系统将要发生内存溢出异常前,会把这些对象列进回收范围之中进行第二次回收,如果这次回收还没有足够的内存,才会抛出内存溢出异常。在JDK 1.2版之后提供了SoftReference类来实现软引用。

        弱引用也是用来描述那些非必须对象,但是它的强度比软引用更弱一些,被弱引用关联的对象只能生存到下一次垃圾收集发生为止。当垃圾收集器开始工作,无论当前内存是否足够,都会回收掉只被弱引用关联的对象。在JDK 1.2版之后提供了WeakReference类来实现弱引用。

        虚引用也称为“幽灵引用”或者“幻影引用”,它是最弱的一种引用关系。一个对象是否有虚引用的存在,完全不会对其生存时间构成影响,也无法通过虚引用来取得一个对象实例。为一个对象设置虚引用关联的唯一目的只是为了能在这个对象被收集器回收时收到一个系统通知。在JDK 1.2版之后提供了PhantomReference类来实现虚引用。

1.4、生存还是死亡?

        即使在可达性分析算法中判定为不可达的对象,也不是“非死不可”的,这时候它们暂时还处于“缓刑”阶段,要真正宣告一个对象死亡,至少要经历两次标记过程:如果对象在进行可达性分析后发现没有与GC Roots相连接的引用链,那它将会被第一次标记,随后进行一次筛选,筛选的条件是此对象是否有必要执行finalize()方法。假如对象没有覆盖finalize()方法,或者finalize()方法已经被虚拟机调用过,那么虚拟机将这两种情况都视为“没有必要执行”。

        如果这个对象被判定为确有必要执行finalize()方法,那么该对象将会被放置在一个名为F-Queue的队列之中,并在稍后由一条由虚拟机自动建立的、低调度优先级的Finalizer线程去执行它们的finalize()方法。这里所说的“执行”是指虚拟机会触发这个方法开始运行,但并不承诺一定会等待它运行结束。这样做的原因是,如果某个对象的finalize()方法执行缓慢,或者更极端地发生了死循环,将很可能导致F-Queue队列中的其他对象永久处于等待,甚至导致整个内存回收子系统的崩溃。finalize()方法是对象逃脱死亡命运的最后一次机会,稍后收集器将对F-Queue中的对象进行第二次小规模的标记,如果对象要在finalize()中成功拯救自己——只要重新与引用链上的任何一个对象建立关联即可,譬如把自己(this关键字)赋值给某个类变量或者对象的成员变量,那在第二次标记时它将被移出“即将回收”的集合;如果对象这时候还没有逃脱,那基本上它就真的要被回收了。

任何一个对象的finalize()方法都只会被系统自动调用一次,如果对象面临下一次回收,它的finalize()方法不会被再次执行。

        还有一点需要特别说明,上面关于对象死亡时finalize()方法的描述可能带点悲情的艺术加工,笔者并不鼓励大家使用这个方法来拯救对象。相反,笔者建议大家尽量避免使用它,因为它并不能等同于C和C++语言中的析构函数,而是Java刚诞生时为了使传统C、C++程序员更容易接受Java所做出的一项妥协。它的运行代价高昂,不确定性大,无法保证各个对象的调用顺序,如今已被官方明确声明为不推荐使用的语法。有些教材中描述它适合做“关闭外部资源”之类的清理性工作,这完全是对finalize()方法用途的一种自我安慰。finalize()能做的所有工作,使用try-finally或者其他方式都可以做得更好、更及时,所以笔者建议大家完全可以忘掉Java语言里面的这个方法。

1.5、回收方法区

        有些人认为方法区(如HotSpot虚拟机中的元空间或者永久代)是没有垃圾收集行为的,《Java虚拟机规范》中提到过可以不要求虚拟机在方法区中实现垃圾收集,事实上也确实有未实现或未能完整实现方法区类型卸载的收集器存在(如JDK 11时期的ZGC收集器就不支持类卸载),方法区垃圾收集的“性价比”通常也是比较低的:在Java堆中,尤其是在新生代中,对常规应用进行一次垃圾收集通常可以回收70%至99%的内存空间,相比之下,方法区回收囿于苛刻的判定条件,其区域垃圾收集的回收成果往往远低于此。

        方法区的垃圾收集主要回收两部分内容:废弃的常量不再使用的类型。回收废弃常量与回收Java堆中的对象非常类似。举个常量池中字面量回收的例子,假如一个字符串“java”曾经进入常量池中,但是当前系统又没有任何一个字符串对象的值是“java”,换句话说,已经没有任何字符串对象引用常量池中的“java”常量,且虚拟机中也没有其他地方引用这个字面量。如果在这时发生内存回收,而且垃圾收集器判断确有必要的话,这个“java”常量就将会被系统清理出常量池。常量池中其他类(接口)、方法、字段的符号引用也与此类似。

        判定一个常量是否“废弃”还是相对简单,而要判定一个类型是否属于“不再被使用的类”的条件就比较苛刻了。需要同时满足下面三个条件:

  • 该类所有的实例都已经被回收,也就是Java堆中不存在该类及其任何派生子类的实例。
  • 加载该类的类加载器已经被回收,这个条件除非是经过精心设计的可替换类加载器的场景,如OSGi、JSP的重加载等,否则通常是很难达成的。
  • 该类对应的java.lang.Class对象没有在任何地方被引用,无法在任何地方通过反射访问该类的方法。

在大量使用反射、动态代理、CGLib等字节码框架,动态生成JSP以及OSGi这类频繁自定义类加载器的场景中,通常都需要Java虚拟机具备类型卸载的能力,以保证不会对方法区造成过大的内存压力。

二、垃圾收集算法

2.1、分代收集理论

        当前商业虚拟机的垃圾收集器,大多数都遵循了“分代收集”(Generational Collection)的理论进行设计,分代收集名为理论,实质是一套符合大多数程序运行实际情况的经验法则,它建立在两个分代假说之上:

  • 1)弱分代假说(Weak Generational Hypothesis):绝大多数对象都是朝生夕灭的。
  • 2)强分代假说(Strong Generational Hypothesis):熬过越多次垃圾收集过程的对象就越难以消亡。

        这两个分代假说共同奠定了多款常用的垃圾收集器的一致的设计原则:收集器应该将Java堆划分出不同的区域,然后将回收对象依据其年龄(年龄即对象熬过垃圾收集过程的次数)分配到不同的区域之中存储。显而易见,如果一个区域中大多数对象都是朝生夕灭,难以熬过垃圾收集过程的话,那么把它们集中放在一起,每次回收时只关注如何保留少量存活而不是去标记那些大量将要被回收的对象,就能以较低代价回收到大量的空间;如果剩下的都是难以消亡的对象,那把它们集中放在一块,虚拟机便可以使用较低的频率来回收这个区域,这就同时兼顾了垃圾收集的时间开销和内存的空间有效利用。

        把分代收集理论具体放到现在的商用Java虚拟机里,设计者一般至少会把Java堆划分为新生代(Young Generation)和老年代(Old Generation)两个区域。顾名思义,在新生代中,每次垃圾收集时都发现有大批对象死去,而每次回收后存活的少量对象,将会逐步晋升到老年代中存放。如果读者有兴趣阅读HotSpot虚拟机源码的话,会发现里面存在着一些名为“*Generation”的实现,
如“DefNewGeneration”和“ParNewGeneration”等,这些就是HotSpot的“分代式垃圾收集器框架”。原本HotSpot鼓励开发者尽量在这个框架内开发新的垃圾收集器,但除了最早期的两组四款收集器之外,后来的开发者并没有继续遵循。导致此事的原因有很多,最根本的是分代收集理论仍在不断发展之中,如何实现也有许多细节可以改进,被既定的代码框架约束反而不便。其实我们只要仔细思考一下,也很容易发现分代收集并非只是简单划分一下内存区域那么容易,它至少存在一个明显的困难:对象不是孤立的,对象之间会存在跨代引用。

        假如要现在进行一次只局限于新生代区域内的收集(Minor GC),但新生代中的对象是完全有可能被老年代所引用的,为了找出该区域中的存活对象,不得不在固定的GC Roots之外,再额外遍历整个老年代中所有对象来确保可达性分析结果的正确性,反过来也是一样。遍历整个老年代所有对象的方案虽然理论上可行,但无疑会为内存回收带来很大的性能负担。为了解决这个问题,就需要对分代收集理论添加第三条经验法则:

  • 3)跨代引用假说(Intergenerational Reference Hypothesis):跨代引用相对于同代引用来说仅占极少数。

        这其实是可根据前两条假说逻辑推理得出的隐含推论:存在互相引用关系的两个对象,是应该倾向于同时生存或者同时消亡的。举个例子,如果某个新生代对象存在跨代引用,由于老年代对象难以消亡,该引用会使得新生代对象在收集时同样得以存活,进而在年龄增长之后晋升到老年代中,这时跨代引用也随即被消除了。

        依据这条假说,我们就不应再为了少量的跨代引用去扫描整个老年代,也不必浪费空间专门记录每一个对象是否存在及存在哪些跨代引用,只需在新生代上建立一个全局的数据结构(该结构被称为“记忆集”,Remembered Set),这个结构把老年代划分成若干小块,标识出老年代的哪一块内存会存在跨代引用。此后当发生Minor GC时,只有包含了跨代引用的小块内存里的对象才会被加入到GC Roots进行扫描。虽然这种方法需要在对象改变引用关系(如将自己或者某个属性赋值)时维护记录数据的正确性,会增加一些运行时的开销,但比起收集时扫描整个老年代来说仍然是划算的。

不同分代的类似名词,为避免读者产生混淆,在这里统一定义:
部分收集(Partial GC):指目标不是完整收集整个Java堆的垃圾收集,其中又分为:

  • 新生代收集(Minor GC/Young GC):指目标只是新生代的垃圾收集。
  • 老年代收集(Major GC/Old GC):指目标只是老年代的垃圾收集。目前只有CMS收集器会有单独收集老年代的行为。另外请注意“Major GC”这个说法现在有点混淆,在不同资料上常有不同所指,读者需按上下文区分到底是指老年代的收集还是整堆收集。
  • 混合收集(Mixed GC):指目标是收集整个新生代以及部分老年代的垃圾收集。目前只有G1收集器会有这种行为。
  • 整堆收集(Full GC):收集整个Java堆和方法区的垃圾收集。

2.2、标记-清除算法

        最早出现也是最基础的垃圾收集算法是“标记-清除”(Mark-Sweep)算法,在1960年由Lisp之父John McCarthy所提出。如它的名字一样,算法分为“标记”和“清除”两个阶段:首先标记出所有需要回收的对象,在标记完成后,统一回收掉所有被标记的对象,也可以反过来,标记存活的对象,统一回收所有未被标记的对象。标记过程就是对象是否属于垃圾的判定过程。

        之所以说它是最基础的收集算法,是因为后续的收集算法大多都是以标记-清除算法为基础,对其缺点进行改进而得到的。它的主要缺点有两个第一个是执行效率不稳定,如果Java堆中包含大量对象,而且其中大部分是需要被回收的,这时必须进行大量标记和清除的动作,导致标记和清除两个过程的执行效率都随对象数量增长而降低;第二个是内存空间的碎片化问题,标记、清除之后会产生大量不连续的内存碎片,空间碎片太多可能会导致当以后在程序运行过程中需要分配较大对象时无法找到足够的连续内存而不得不提前触发另一次垃圾收集动作。

        标记-清除算法的执行过程如图所示:

 2.3、标记-复制算法

        标记-复制算法常被简称为复制算法。为了解决标记-清除算法面对大量可回收对象时执行效率低的问题,1969年Fenichel提出了一种称为“半区复制”(Semispace Copying)的垃圾收集算法,它将可用内存按容量划分为大小相等的两块,每次只使用其中的一块。当这一块的内存用完了,就将还存活着的对象复制到另外一块上面,然后再把已使用过的内存空间一次清理掉。如果内存中多数对象都是存活的,这种算法将会产生大量的内存间复制的开销,但对于多数对象都是可回收的情况,算法需要复制的就是占少数的存活对象,而且每次都是针对整个半区进行内存回收,分配内存时也就不用考虑有空间碎片的复杂情况,只要移动堆顶指针,按顺序分配即可。这样实现简单,运行高效,不过其缺陷也显而易见,这种复制回收算法的代价是将可用内存缩小为了原来的一半,空间浪费未免太多了一点。

标记-复制算法的执行过程如图所示。

        现在的商用Java虚拟机大多都优先采用了这种收集算法去回收新生代,IBM公司曾有一项专门研究对新生代“朝生夕灭”的特点做了更量化的诠释——新生代中的对象有98%熬不过第一轮收集。因此并不需要按照1∶1的比例来划分新生代的内存空间。

        在1989年,Andrew Appel针对具备“朝生夕灭”特点的对象,提出了一种更优化的半区复制分代策略,现在称为“Appel式回收”。HotSpot虚拟机的Serial、ParNew等新生代收集器均采用了这种策略来设计新生代的内存布局。Appel式回收的具体做法是把新生代分为一块较大的Eden空间和两块较小的Survivor空间,每次分配内存只使用Eden和其中一块Survivor。发生垃圾搜集时,将Eden和Survivor中仍然存活的对象一次性复制到另外一块Survivor空间上,然后直接清理掉Eden和已用过的那块Survivor空间。HotSpot虚拟机默认Eden和Survivor的大小比例是8∶1,也即每次新生代中可用内存空间为整个新生代容量的90%(Eden的80%加上一个Survivor的10%),只有一个Survivor空间,即10%的新生代是会被“浪费”的。当然,98%的对象可被回收仅仅是“普通场景”下测得的数据,任何人都没有办法百分百保证每次回收都只有不多于10%的对象存活,因此Appel式回收还有一个充当罕见情况的“逃生门”的安全设计,当Survivor空间不足以容纳一次Minor GC之后存活的对象时,就需要依赖其他内存区域(实际上大多就是老年代)进行分配担保(Handle Promotion)。

        内存的分配担保好比我们去银行借款,如果我们信誉很好,在98%的情况下都能按时偿还,于是银行可能会默认我们下一次也能按时按量地偿还贷款,只需要有一个担保人能保证如果我不能还款时,可以从他的账户扣钱,那银行就认为没有什么风险了。内存的分配担保也一样,如果另外一块Survivor空间没有足够空间存放上一次新生代收集下来的存活对象,这些对象便将通过分配担保机制直接进入老年代,这对虚拟机来说就是安全的。

2.4、标记-整理算法

        标记-复制算法在对象存活率较高时就要进行较多的复制操作,效率将会降低。更关键的是,如果不想浪费50%的空间,就需要有额外的空间进行分配担保,以应对被使用的内存中所有对象都100%存活的极端情况,所以在老年代一般不能直接选用这种算法。

        针对老年代对象的存亡特征,1974年Edward Lueders提出了另外一种有针对性的“标记-整理”(Mark-Compact)算法,其中的标记过程仍然与“标记-清除”算法一样,但后续步骤不是直接对可回收对象进行清理,而是让所有存活的对象都向内存空间一端移动,然后直接清理掉边界以外的内存,“标记-整理”算法的示意图如下图所示。

        标记-清除算法与标记-整理算法的本质差异在于前者是一种非移动式的回收算法,而后者是移动式的。是否移动回收后的存活对象是一项优缺点并存的风险决策:

        如果移动存活对象,尤其是在老年代这种每次回收都有大量对象存活区域,移动存活对象并更新所有引用这些对象的地方将会是一种极为负重的操作,而且这种对象移动操作必须全程暂停用户应用程序才能进行,这就更加让使用者不得不小心翼翼地权衡其弊端了,像这样的停顿被最初的虚拟机设计者形象地描述为“Stop The World”。

        但如果跟标记-清除算法那样完全不考虑移动和整理存活对象的话,弥散于堆中的存活对象导致的空间碎片化问题就只能依赖更为复杂的内存分配器和内存访问器来解决。譬如通过“分区空闲分配链表”来解决内存分配问题(计算机硬盘存储大文件就不要求物理连续的磁盘空间,能够在碎片化的硬盘上存储和访问就是通过硬盘分区表实现的)。内存的访问是用户程序最频繁的操作,甚至都没有之一,假如在这个环节上增加了额外的负担,势必会直接影响应用程序的吞吐量。

        基于以上两点,是否移动对象都存在弊端,移动则内存回收时会更复杂,不移动则内存分配时会更复杂。从垃圾收集的停顿时间来看,不移动对象停顿时间会更短,甚至可以不需要停顿,但是从整个程序的吞吐量来看,移动对象会更划算。此语境中,吞吐量的实质是赋值器(Mutator,可以理解为使用垃圾收集的用户程序,为便于理解,多数地方用“用户程序”或“用户线程”代替)与收集器的效率总和。即使不移动对象会使得收集器的效率提升一些,但因内存分配和访问相比垃圾收集频率要高得多,这部分的耗时增加,总吞吐量仍然是下降的。HotSpot虚拟机里面关注吞吐量的Parallel Scavenge收集器是基于标记-整理算法的,而关注延迟的CMS收集器则是基于标记-清除算法的,这也从侧面印证这点。

        另外,还有一种“和稀泥式”解决方案可以不在内存分配和访问上增加太大额外负担,做法是让虚拟机平时多数时间都采用标记-清除算法,暂时容忍内存碎片的存在,直到内存空间的碎片化程度已经大到影响对象分配时,再采用标记-整理算法收集一次,以获得规整的内存空间。前面提到的基于标记-清除算法的CMS收集器面临空间碎片过多时采用的就是这种处理办法。

三、HotSpot的算法细节实现

3.1、根节点枚举

        我们以可达性分析算法中从GC Roots集合找引用链这个操作作为介绍虚拟机高效实现的第一个例子。固定可作为GC Roots的节点主要在全局性的引用(例如常量或类静态属性)与执行上下文(例如栈帧中的本地变量表)中,尽管目标明确,但查找过程要做到高效并非一件容易的事情,现在Java应用越做越庞大,光是方法区的大小就常有数百上千兆,里面的类、常量等更是恒河沙数,若要逐个检查以这里为起源的引用肯定得消耗不少时间。

        迄今为止,所有收集器在根节点枚举这一步骤时都是必须暂停用户线程的,因此毫无疑问根节点枚举与之前提及的整理内存碎片一样会面临相似的“Stop The World”的困扰。现在可达性分析算法耗时最长的查找引用链的过程已经可以做到与用户线程一起并发,但根节点枚举始终还是必须在一个能保障一致性的快照中才得以进行——这里“一致性”的意思是整个枚举期间执行子系统看起来就像被冻结在某个时间点上,不会出现分析过程中,根节点集合的对象引用关系还在不断变化的情况,若这点不能满足的话,分析结果准确性也就无法保证。这是导致垃圾收集过程必须停顿所有用户线程的其中一个重要原因,即使是号称停顿时间可控,或者(几乎)不会发生停顿的CMS、G1、ZGC等收集器,枚举根节点时也是必须要停顿的。

        由于目前主流Java虚拟机使用的都是准确式垃圾收集(这个概念在第1章介绍Exact VM相对于Classic VM的改进时介绍过),所以当用户线程停顿下来之后,其实并不需要一个不漏地检查完所有执行上下文和全局的引用位置,虚拟机应当是有办法直接得到哪些地方存放着对象引用的。在HotSpot的解决方案里,是使用一组称为OopMap的数据结构来达到这个目的。一旦类加载动作完成的时候,HotSpot就会把对象内什么偏移量上是什么类型的数据计算出来,在即时编译过程中,也会在特定的位置记录下栈里和寄存器里哪些位置是引用。这样收集器在扫描时就可以直接得知这些信息了,并不需要真正一个不漏地从方法区等GC Roots开始查找。

3.2、安全点

        在OopMap的协助下,HotSpot可以快速准确地完成GC Roots枚举,但一个很现实的问题随之而来:可能导致引用关系变化,或者说导致OopMap内容变化的指令非常多,如果为每一条指令都生成对应的OopMap,那将会需要大量的额外存储空间,这样垃圾收集伴随而来的空间成本就会变得无法忍受的高昂。

        实际上HotSpot也的确没有为每条指令都生成OopMap,前面已经提到,只是在“特定的位置”记录了这些信息,这些位置被称为安全点(Safepoint)。有了安全点的设定,也就决定了用户程序执行时并非在代码指令流的任意位置都能够停顿下来开始垃圾收集,而是强制要求必须执行到达安全点后才能够暂停。因此,安全点的选定既不能太少以至于让收集器等待时间过长,也不能太过频繁以至于过分增大运行时的内存负荷。安全点位置的选取基本上是以“是否具有让程序长时间执行的特征”为标准进行选定的,因为每条指令执行的时间都非常短暂,程序不太可能因为指令流长度太长这样的原因而长时间执行,“长时间执行”的最明显特征就是指令序列的复用,例如方法调用、循环跳转、异常跳转等都属于指令序列复用,所以只有具有这些功能的指令才会产生安全点。

        对于安全点,另外一个需要考虑的问题是,如何在垃圾收集发生时让所有线程(这里其实不包括执行JNI调用的线程)都跑到最近的安全点,然后停顿下来。这里有两种方案可供选择:抢先式中断(Preemptive Suspension)和主动式中断(Voluntary Suspension),抢先式中断不需要线程的执行代码主动去配合,在垃圾收集发生时,系统首先把所有用户线程全部中断,如果发现有用户线程中断的地方不在安全点上,就恢复这条线程执行,让它一会再重新中断,直到跑到安全点上。现在几乎没有虚拟机实现采用抢先式中断来暂停线程响应GC事件。

        而主动式中断的思想是当垃圾收集需要中断线程的时候,不直接对线程操作,仅仅简单地设置一个标志位,各个线程执行过程时会不停地主动去轮询这个标志,一旦发现中断标志为真时就自己在最近的安全点上主动中断挂起。轮询标志的地方和安全点是重合的,另外还要加上所有创建对象和其他需要在Java堆上分配内存的地方,这是为了检查是否即将要发生垃圾收集,避免没有足够内存分配新对象。

        由于轮询操作在代码中会频繁出现,这要求它必须足够高效。HotSpot使用内存保护陷阱的方式,把轮询操作精简至只有一条汇编指令的程度。

3.3、安全区域

        使用安全点的设计似乎已经完美解决如何停顿用户线程,让虚拟机进入垃圾回收状态的问题了,但实际情况却并不一定。安全点机制保证了程序执行时,在不太长的时间内就会遇到可进入垃圾收集过程的安全点。但是,程序“不执行”的时候呢?所谓的程序不执行就是没有分配处理器时间,典型的场景便是用户线程处于Sleep状态或者Blocked状态,这时候线程无法响应虚拟机的中断请求,不能再走到安全的地方去中断挂起自己,虚拟机也显然不可能持续等待线程重新被激活分配处理器时间。对于这种情况,就必须引入安全区域(Safe Region)来解决。

        安全区域是指能够确保在某一段代码片段之中,引用关系不会发生变化,因此,在这个区域中任意地方开始垃圾收集都是安全的。我们也可以把安全区域看作被扩展拉伸了的安全点。

        当用户线程执行到安全区域里面的代码时,首先会标识自己已经进入了安全区域,那样当这段时间里虚拟机要发起垃圾收集时就不必去管这些已声明自己在安全区域内的线程了。当线程要离开安全区域时,它要检查虚拟机是否已经完成了根节点枚举(或者垃圾收集过程中其他需要暂停用户线程的阶段),如果完成了,那线程就当作没事发生过,继续执行;否则它就必须一直等待,直到收到可以离开安全区域的信号为止。

3.4、记忆集与卡表

        讲解分代收集理论的时候,提到了为解决对象跨代引用所带来的问题,垃圾收集器在新生代中建立了名为记忆集(Remembered Set)的数据结构,用以避免把整个老年代加进GC Roots扫描范围。事实上并不只是新生代、老年代之间才有跨代引用的问题,所有涉及部分区域收集(Partial GC)行为的垃圾收集器,典型的如G1、ZGC和Shenandoah收集器,都会面临相同的问题,因此我们有必要进一步理清记忆集的原理和实现方式,以便在后续章节里介绍几款最新的收集器相关知识时能更好地理解。

        记忆集是一种用于记录从非收集区域指向收集区域的指针集合的抽象数据结构。如果我们不考虑效率和成本的话,最简单的实现可以用非收集区域中所有含跨代引用的对象数组来实现这个数据结构。

        这种记录全部含跨代引用对象的实现方案,无论是空间占用还是维护成本都相当高昂。而在垃圾收集的场景中,收集器只需要通过记忆集判断出某一块非收集区域是否存在有指向了收集区域的指针就可以了,并不需要了解这些跨代指针的全部细节。那设计者在实现记忆集的时候,便可以选择更为粗犷的记录粒度来节省记忆集的存储和维护成本,下面列举了一些可供选择(当然也可以选择这个范围以外的)的记录精度:

        字长精度:每个记录精确到一个机器字长(就是处理器的寻址位数,如常见的32位或64位,这个精度决定了机器访问物理内存地址的指针长度),该字包含跨代指针。

        对象精度:每个记录精确到一个对象,该对象里有字段含有跨代指针。

        卡精度:每个记录精确到一块内存区域,该区域内有对象含有跨代指针。

        其中,第三种“卡精度”所指的是用一种称为“卡表”(Card Table)的方式去实现记忆集,这也是目前最常用的一种记忆集实现形式,一些资料中甚至直接把它和记忆集混为一谈。前面定义中提到记忆集其实是一种“抽象”的数据结构,抽象的意思是只定义了记忆集的行为意图,并没有定义其行为的具体实现。卡表就是记忆集的一种具体实现,它定义了记忆集的记录精度、与堆内存的映射关系等。关于卡表与记忆集的关系,读者不妨按照Java语言中HashMap与Map的关系来类比理解。

        卡表最简单的形式可以只是一个字节数组,而HotSpot虚拟机确实也是这样做的。以下这行代码是HotSpot默认的卡表标记逻辑:

CARD_TABLE [this address >> 9] = 0;

3.5、写屏障

        我们已经解决了如何使用记忆集来缩减GC Roots扫描范围的问题,但还没有解决卡表元素如何维护的问题,例如它们何时变脏、谁来把它们变脏等。

        卡表元素何时变脏的答案是很明确的——有其他分代区域中对象引用了本区域对象时,其对应的卡表元素就应该变脏,变脏时间点原则上应该发生在引用类型字段赋值的那一刻。但问题是如何变脏,即如何在对象赋值的那一刻去更新维护卡表呢?假如是解释执行的字节码,那相对好处理,虚拟机负责每条字节码指令的执行,有充分的介入空间;但在编译执行的场景中呢?经过即时编译后的代码已经是纯粹的机器指令流了,这就必须找到一个在机器码层面的手段,把维护卡表的动作放到每一个赋值操作之中。

        在HotSpot虚拟机里是通过写屏障(Write Barrier)技术维护卡表状态的。先请读者注意将这里提到的“写屏障”,以及后面在低延迟收集器中会提到的“读屏障”与解决并发乱序执行问题中的“内存屏障”区分开来,避免混淆。写屏障可以看作在虚拟机层面对“引用类型字段赋值”这个动作的AOP切面,在引用对象赋值时会产生一个环形(Around)通知,供程序执行额外的动作,也就是说赋值的前后都在写屏障的覆盖范畴内。在赋值前的部分的写屏障叫作写前屏障(Pre-Write Barrier),在赋值后的则叫作写后屏障(Post-Write Barrier)。HotSpot虚拟机的许多收集器中都有使用到写屏障,但直至G1收集器出现之前,其他收集器都只用到了写后屏障。

        应用写屏障后,虚拟机就会为所有赋值操作生成相应的指令,一旦收集器在写屏障中增加了更新卡表操作,无论更新的是不是老年代对新生代对象的引用,每次只要对引用进行更新,就会产生额外的开销,不过这个开销与Minor GC时扫描整个老年代的代价相比还是低得多的。

        除了写屏障的开销外,卡表在高并发场景下还面临着“伪共享”(False Sharing)问题。伪共享是处理并发底层细节时一种经常需要考虑的问题,现代中央处理器的缓存系统中是以缓存行(Cache Line)为单位存储的,当多线程修改互相独立的变量时,如果这些变量恰好共享同一个缓存行,就会彼此影响(写回、无效化或者同步)而导致性能降低,这就是伪共享问题。

        在JDK 7之后,HotSpot虚拟机增加了一个新的参数-XX:+UseCondCardMark,用来决定是否开启卡表更新的条件判断。开启会增加一次额外判断的开销,但能够避免伪共享问题,两者各有性能损耗,是否打开要根据应用实际运行情况来进行测试权衡。

3.6、并发的可达性分析

        当前主流编程语言的垃圾收集器基本上都是依靠可达性分析算法来判定对象是否存活的,可达性分析算法理论上要求全过程都基于一个能保障一致性的快照中才能够进行分析,这意味着必须全程冻结用户线程的运行。在根节点枚举(见3.4.1节)这个步骤中,由于GC Roots相比起整个Java堆中全部的对象毕竟还算是极少数,且在各种优化技巧(如OopMap)的加持下,它带来的停顿已经是非常短暂且相对固定(不随堆容量而增长)的了。可从GC Roots再继续往下遍历对象图,这一步骤的停顿时间就必定会与Java堆容量直接成正比例关系了:堆越大,存储的对象越多,对象图结构越复杂,要标记更多对象而产生的停顿时间自然就更长,这听起来是理所当然的事情。

        要知道包含“标记”阶段是所有追踪式垃圾收集算法的共同特征,如果这个阶段会随着堆变大而等比例增加停顿时间,其影响就会波及几乎所有的垃圾收集器,同理可知,如果能够削减这部分停顿时间的话,那收益也将会是系统性的。

        想解决或者降低用户线程的停顿,就要先搞清楚为什么必须在一个能保障一致性的快照上才能进行对象图的遍历?为了能解释清楚这个问题,我们引入三色标记(Tri-color Marking)作为工具来辅助推导,把遍历对象图过程中遇到的对象,按照“是否访问过”这个条件标记成以下三种颜色:

  • 白色:表示对象尚未被垃圾收集器访问过。显然在可达性分析刚刚开始的阶段,所有的对象都是白色的,若在分析结束的阶段,仍然是白色的对象,即代表不可达。
  • 黑色:表示对象已经被垃圾收集器访问过,且这个对象的所有引用都已经扫描过。黑色的对象代表已经扫描过,它是安全存活的,如果有其他对象引用指向了黑色对象,无须重新扫描一遍。黑色对象不可能直接(不经过灰色对象)指向某个白色对象。
  • 灰色:表示对象已经被垃圾收集器访问过,但这个对象上至少存在一个引用还没有被扫描过。

        关于可达性分析的扫描过程,读者不妨发挥一下想象力,把它看作对象图上一股以灰色为波峰的波纹从黑向白推进的过程,如果用户线程此时是冻结的,只有收集器线程在工作,那不会有任何问题。但如果用户线程与收集器是并发工作呢?收集器在对象图上标记颜色,同时用户线程在修改引用关系——即修改对象图的结构,这样可能出现两种后果。一种是把原本消亡的对象错误标记为存活,这不是好事,但其实是可以容忍的,只不过产生了一点逃过本次收集的浮动垃圾而已,下次收集清理掉就好。另一种是把原本存活的对象错误标记为已消亡,这就是非常致命的后果了,程序肯定会因此发生错误,下面表演示了这样的致命错误具体是如何产生的。

         Wilson于1994年在理论上证明了,当且仅当以下两个条件同时满足时,会产生“对象消失”的问题,即原本应该是黑色的对象被误标为白色:

  • 赋值器插入了一条或多条从黑色对象到白色对象的新引用;
  • 赋值器删除了全部从灰色对象到该白色对象的直接或间接引用。

        因此,我们要解决并发扫描时的对象消失问题,只需破坏这两个条件的任意一个即可。由此分别产生了两种解决方案:增量更新(Incremental Update)和原始快照(Snapshot At The Beginning,SATB)。

        增量更新要破坏的是第一个条件,当黑色对象插入新的指向白色对象的引用关系时,就将这个新插入的引用记录下来,等并发扫描结束之后,再将这些记录过的引用关系中的黑色对象为根,重新扫描一次。这可以简化理解为,黑色对象一旦新插入了指向白色对象的引用之后,它就变回灰色对象了。

        原始快照要破坏的是第二个条件,当灰色对象要删除指向白色对象的引用关系时,就将这个要删除的引用记录下来,在并发扫描结束之后,再将这些记录过的引用关系中的灰色对象为根,重新扫描一次。这也可以简化理解为,无论引用关系删除与否,都会按照刚刚开始扫描那一刻的对象图快照来进行搜索。

        以上无论是对引用关系记录的插入还是删除,虚拟机的记录操作都是通过写屏障实现的。在HotSpot虚拟机中,增量更新和原始快照这两种解决方案都有实际应用,譬如,CMS是基于增量更新来做并发标记的,G1、Shenandoah则是用原始快照来实现。

        到这里,简要介绍了HotSpot虚拟机如何发起内存回收、如何加速内存回收,以及如何保证回收正确性等问题,但是虚拟机如何具体地进行内存回收动作仍然未涉及。因为内存回收如何进行是由虚拟机所采用哪一款垃圾收集器所决定的,而通常虚拟机中往往有多种垃圾收集器,下面笔者将逐一介绍HotSpot虚拟机中出现过的垃圾收集器。

四、经典垃圾收集器

        图展示了七种作用于不同分代的收集器,如果两个收集器之间存在连线,就说明它们可以搭配使用,图中收集器所处的区域,则表示它是属于新生代收集器抑或是老年代收集器。接下来笔者将逐一介绍这些收集器的目标、特性、原理和使用场景,并重点分析CMS和G1这两款相对复杂而又广泛使用的收集器,深入了解它们的部分运作细节。

        在介绍这些收集器各自的特性之前,让我们先来明确一个观点:虽然我们会对各个收集器进行比较,但并非为了挑选一个最好的收集器出来,虽然垃圾收集器的技术在不断进步,但直到现在还没有最好的收集器出现,更加不存在“万能”的收集器,所以我们选择的只是对具体应用最合适的收集器。这点不需要多加论述就能证明:如果有一种放之四海皆准、任何场景下都适用的完美收集器存在,HotSpot虚拟机完全没必要实现那么多种不同的收集器了。

4.1、Serial收集器

        Serial收集器是最基础、历史最悠久的收集器,曾经(在JDK 1.3.1之前)是HotSpot虚拟机新生代收集器的唯一选择。大家只看名字就能够猜到,这个收集器是一个单线程工作的收集器,但它的“单线程”的意义并不仅仅是说明它只会使用一个处理器或一条收集线程去完成垃圾收集工作,更重要的是强调在它进行垃圾收集时,必须暂停其他所有工作线程,直到它收集结束。“Stop The World”这个词语也许听起来很酷,但这项工作是由虚拟机在后台自动发起和自动完成的,在用户不可知、不可控的情况下把用户的正常工作的线程全部停掉,这对很多应用来说都是不能接受的。读者不妨试想一下,要是你的电脑每运行一个小时就会暂停响应五分钟,你会有什么样的心情?图3-7示意了Serial/Serial Old收集器的运行过程。

        对于“Stop The World”带给用户的恶劣体验,早期HotSpot虚拟机的设计者们表示完全理解,但也同时表示非常委屈:“你妈妈在给你打扫房间的时候,肯定也会让你老老实实地在椅子上或者房间外待着,如果她一边打扫,你一边乱扔纸屑,这房间还能打扫完?”这确实是一个合情合理的矛盾,虽然垃圾收集这项工作听起来和打扫房间属于一个工种,但实际上肯定还要比打扫房间复杂得多!

        从JDK 1.3开始,一直到现在最新的JDK 13,HotSpot虚拟机开发团队为消除或者降低用户线程因垃圾收集而导致停顿的努力一直持续进行着,从Serial收集器到Parallel收集器,再到Concurrent Mark Sweep(CMS)和Garbage First(G1)收集器,最终至现在垃圾收集器的最前沿成果Shenandoah和ZGC等,我们看到了一个个越来越构思精巧,越来越优秀,也越来越复杂的垃圾收集器不断涌现,用户线程的停顿时间在持续缩短,但是仍然没有办法彻底消除(这里不去讨论RTSJ中的收集器),探索更优秀垃圾收集器的工作仍在继续。

        写到这里,笔者似乎已经把Serial收集器描述成一个最早出现,但目前已经老而无用,食之无味,弃之可惜的“鸡肋”了,但事实上,迄今为止,它依然是HotSpot虚拟机运行在客户端模式下的默认新生代收集器,有着优于其他收集器的地方,那就是简单而高效(与其他收集器的单线程相比),对于内存资源受限的环境,它是所有收集器里额外内存消耗(Memory Footprint)最小的;对于单核处理器或处理器核心数较少的环境来说,Serial收集器由于没有线程交互的开销,专心做垃圾收集自然可以获得最高的单线程收集效率。在用户桌面的应用场景以及近年来流行的部分微服务应用中,分配给虚拟机管理的内存一般来说并不会特别大,收集几十兆甚至一两百兆的新生代(仅仅是指新生代使用的内存,桌面应用甚少超过这个容量),垃圾收集的停顿时间完全可以控制在十几、几十毫秒,最多一百多毫秒以内,只要不是频繁发生收集,这点停顿时间对许多用户来说是完全可以接受的。所以,Serial收集器对于运行在客户端模式下的虚拟机来说是一个很好的选择

4.2、ParNew收集器

        ParNew收集器实质上是Serial收集器的多线程并行版本,除了同时使用多条线程进行垃圾收集之外,其余的行为包括Serial收集器可用的所有控制参数(例如:-XX:SurvivorRatio、-XX:
PretenureSizeThreshold、-XX:HandlePromotionFailure等)、收集算法、Stop The World、对象分配规则、回收策略等都与Serial收集器完全一致,在实现上这两种收集器也共用了相当多的代码。ParNew收集器的工作过程如图3-8所示。

        在JDK 5发布时,HotSpot推出了一款在强交互应用中几乎可称为具有划时代意义的垃圾收集器——CMS收集器。这款收集器是HotSpot虚拟机中第一款真正意义上支持并发的垃圾收集器,它首次实现了让垃圾收集线程与用户线程(基本上)同时工作。 

        遗憾的是,CMS作为老年代的收集器,却无法与JDK 1.4.0中已经存在的新生代收集器Parallel Scavenge配合工作,所以在JDK 5中使用CMS来收集老年代的时候,新生代只能选择ParNew或者Serial收集器中的一个。ParNew收集器是激活CMS后(使用-XX:+UseConcMarkSweepGC选项)的默认新生代收集器,也可以使用-XX:+/-UseParNewGC选项来强制指定或者禁用它。

        可以说直到CMS的出现才巩固了ParNew的地位,但成也萧何败也萧何,随着垃圾收集器技术的不断改进,更先进的G1收集器带着CMS继承者和替代者的光环登场。G1是一个面向全堆的收集器,不再需要其他新生代收集器的配合工作。所以自JDK 9开始,ParNew加CMS收集器的组合就不再是官方推荐的服务端模式下的收集器解决方案了。官方希望它能完全被G1所取代,甚至还取消了ParNew加Serial Old以及Serial加CMS这两组收集器组合的支持(其实原本也很少人这样使用),并直接取消了-XX:+UseParNewGC参数,这意味着ParNew和CMS从此只能互相搭配使用,再也没有其他收集器能够和它们配合了。读者也可以理解为从此以后,ParNew合并入CMS,成为它专门处理新生代的组成部分。ParNew可以说是HotSpot虚拟机中第一款退出历史舞台的垃圾收集器。

        ParNew收集器在单核心处理器的环境中绝对不会有比Serial收集器更好的效果,甚至由于存在线程交互的开销,该收集器在通过超线程(Hyper-Threading)技术实现的伪双核处理器环境中都不能百分之百保证超越Serial收集器。当然,随着可以被使用的处理器核心数量的增加,ParNew对于垃圾收集时系统资源的高效利用还是很有好处的。它默认开启的收集线程数与处理器核心数量相同,在处理器核心非常多(譬如32个,现在CPU都是多核加超线程设计,服务器达到或超过32个逻辑核心的情况非常普遍)的环境中,可以使用-XX:ParallelGCThreads参数来限制垃圾收集的线程数。

注意:从ParNew收集器开始,后面还将会接触到若干款涉及“并发”和“并行”概念的收集器。在大家可能产生疑惑之前,有必要先解释清楚这两个名词。并行和并发都是并发编程中的专业名词,在谈论垃圾收集器的上下文语境中,它们可以理解为:

  • 并行(Parallel):并行描述的是多条垃圾收集器线程之间的关系,说明同一时间有多条这样的线程在协同工作,通常默认此时用户线程是处于等待状态。
  • 并发(Concurrent):并发描述的是垃圾收集器线程与用户线程之间的关系,说明同一时间垃圾收集器线程与用户线程都在运行。由于用户线程并未被冻结,所以程序仍然能响应服务请求,但由于垃圾收集器线程占用了一部分系统资源,此时应用程序的处理的吞吐量将受到一定影响。

4.3、Parallel Scavenge收集器

        Parallel Scavenge收集器也是一款新生代收集器,它同样是基于标记-复制算法实现的收集器,也是能够并行收集的多线程收集器……Parallel Scavenge的诸多特性从表面上看和ParNew非常相似,那它有什么特别之处呢?

        Parallel Scavenge收集器的特点是它的关注点与其他收集器不同,CMS等收集器的关注点是尽可能地缩短垃圾收集时用户线程的停顿时间,而Parallel Scavenge收集器的目标则是达到一个可控制的吞吐量(Throughput)。所谓吞吐量就是处理器用于运行用户代码的时间与处理器总消耗时间的比值,即:

        如果虚拟机完成某个任务,用户代码加上垃圾收集总共耗费了100分钟,其中垃圾收集花掉1分钟,那吞吐量就是99%。停顿时间越短就越适合需要与用户交互或需要保证服务响应质量的程序,良好的响应速度能提升用户体验;而高吞吐量则可以最高效率地利用处理器资源,尽快完成程序的运算任务,主要适合在后台运算而不需要太多交互的分析任务。

        Parallel Scavenge收集器提供了两个参数用于精确控制吞吐量,分别是控制最大垃圾收集停顿时间的-XX:MaxGCPauseMillis参数以及直接设置吞吐量大小的-XX:GCTimeRatio参数。

        -XX:MaxGCPauseMillis参数允许的值是一个大于0的毫秒数,收集器将尽力保证内存回收花费的时间不超过用户设定值。不过大家不要异想天开地认为如果把这个参数的值设置得更小一点就能使得系统的垃圾收集速度变得更快,垃圾收集停顿时间缩短是以牺牲吞吐量和新生代空间为代价换取的:系统把新生代调得小一些,收集300MB新生代肯定比收集500MB快,但这也直接导致垃圾收集发生得更频繁,原来10秒收集一次、每次停顿100毫秒,现在变成5秒收集一次、每次停顿70毫秒。停顿时间的确在下降,但吞吐量也降下来了。

        -XX:GCTimeRatio参数的值则应当是一个大于0小于100的整数,也就是垃圾收集时间占总时间的比率,相当于吞吐量的倒数。譬如把此参数设置为19,那允许的最大垃圾收集时间就占总时间的5%(即1/(1+19)),默认值为99,即允许最大1%(即1/(1+99))的垃圾收集时间。

        由于与吞吐量关系密切,Parallel Scavenge收集器也经常被称作“吞吐量优先收集器”。除上述两个参数之外,Parallel Scavenge收集器还有一个参数-XX:+UseAdaptiveSizePolicy值得我们关注。这是一个开关参数,当这个参数被激活之后,就不需要人工指定新生代的大小(-Xmn)、Eden与Survivor区的比例(-XX:SurvivorRatio)、晋升老年代对象大小(-XX:PretenureSizeThreshold)等细节参数了,虚拟机会根据当前系统的运行情况收集性能监控信息,动态调整这些参数以提供最合适的停顿时间或者最大的吞吐量。这种调节方式称为垃圾收集的自适应的调节策略(GC Ergonomics)。如果读者对于收集器运作不太了解,手工优化存在困难的话,使用Parallel Scavenge收集器配合自适应调节策略,把内存管理的调优任务交给虚拟机去完成也许是一个很不错的选择。只需要把基本的内存数据设置好(如-Xmx设置最大堆),然后使用-XX:MaxGCPauseMillis参数(更关注最大停顿时间)或-XX:GCTimeRatio(更关注吞吐量)参数给虚拟机设立一个优化目标,那具体细节参数的调节工作就由虚拟机完成了。自适应调节策略也是Parallel Scavenge收集器区别于ParNew收集器的一个重要特性。

4.4、Serial Old收集器

        Serial Old是Serial收集器的老年代版本,它同样是一个单线程收集器,使用标记-整理算法。这个收集器的主要意义也是供客户端模式下的HotSpot虚拟机使用。如果在服务端模式下,它也可能有两种用途:一种是在JDK 5以及之前的版本中与Parallel Scavenge收集器搭配使用,另外一种就是作为CMS收集器发生失败时的后备预案,在并发收集发生Concurrent Mode Failure时使用。这两点都将在后面的内容中继续讲解。Serial Old收集器的工作过程如图3-9所示。

        需要说明一下,Parallel Scavenge收集器架构中本身有PS MarkSweep收集器来进行老年代收集,并非直接调用Serial Old收集器,但是这个PS MarkSweep收集器与Serial Old的实现几乎是一样的,所以在官方的许多资料中都是直接以Serial Old代替PS MarkSweep进行讲解,这里笔者也采用这种方式。

4.5、Parallel Old收集器

        Parallel Old是Parallel Scavenge收集器的老年代版本,支持多线程并发收集,基于标记-整理算法实现。这个收集器是直到JDK 6时才开始提供的,在此之前,新生代的Parallel Scavenge收集器一直处于相当尴尬的状态,原因是如果新生代选择了Parallel Scavenge收集器,老年代除了Serial Old(PS MarkSweep)收集器以外别无选择,其他表现良好的老年代收集器,如CMS无法与它配合工作。由于老年代Serial Old收集器在服务端应用性能上的“拖累”,使用Parallel Scavenge收集器也未必能在整体上获得吞吐量最大化的效果。同样,由于单线程的老年代收集中无法充分利用服务器多处理器的并行处理能力,在老年代内存空间很大而且硬件规格比较高级的运行环境中,这种组合的总吞吐量甚至不一定比ParNew加CMS的组合来得优秀。

        直到Parallel Old收集器出现后,“吞吐量优先”收集器终于有了比较名副其实的搭配组合,在注重吞吐量或者处理器资源较为稀缺的场合,都可以优先考虑Parallel Scavenge加Parallel Old收集器这个组合。Parallel Old收集器的工作过程如图3-10所示。

4.6、CMS收集器

        CMS(Concurrent Mark Sweep)收集器是一种以获取最短回收停顿时间为目标的收集器。目前很大一部分的Java应用集中在互联网网站或者基于浏览器的B/S系统的服务端上,这类应用通常都会较为关注服务的响应速度,希望系统停顿时间尽可能短,以给用户带来良好的交互体验。CMS收集器就非常符合这类应用的需求。

        从名字(包含“Mark Sweep”)上就可以看出CMS收集器是基于标记-清除算法实现的,它的运作过程相对于前面几种收集器来说要更复杂一些,整个过程分为四个步骤,包括:

  • 1)初始标记(CMS initial mark)
  • 2)并发标记(CMS concurrent mark)
  • 3)重新标记(CMS remark)
  • 4)并发清除(CMS concurrent sweep)

        其中初始标记、重新标记这两个步骤仍然需要“Stop The World”。初始标记仅仅只是标记一下GC Roots能直接关联到的对象,速度很快;并发标记阶段就是从GC Roots的直接关联对象开始遍历整个对象图的过程,这个过程耗时较长但是不需要停顿用户线程,可以与垃圾收集线程一起并发运行;而重新标记阶段则是为了修正并发标记期间,因用户程序继续运作而导致标记产生变动的那一部分对象的标记记录,这个阶段的停顿时间通常会比初始标记阶段稍长一些,但也远比并发标记阶段的时间短;最后是并发清除阶段,清理删除掉标记阶段判断的已经死亡的对象,由于不需要移动存活对象,所以这个阶段也是可以与用户线程同时并发的。

        由于在整个过程中耗时最长的并发标记和并发清除阶段中,垃圾收集器线程都可以与用户线程一起工作,所以从总体上来说,CMS收集器的内存回收过程是与用户线程一起并发执行的。通过图3-11可以比较清楚地看到CMS收集器的运作步骤中并发和需要停顿的阶段。

        CMS是一款优秀的收集器,它最主要的优点在名字上已经体现出来:并发收集、低停顿,一些官方公开文档里面也称之为“并发低停顿收集器”(Concurrent Low Pause Collector)。CMS收集器是HotSpot虚拟机追求低停顿的第一次成功尝试,但是它还远达不到完美的程度,至少有以下三个明显的缺点: 

        首先,CMS收集器对处理器资源非常敏感。事实上,面向并发设计的程序都对处理器资源比较敏感。在并发阶段,它虽然不会导致用户线程停顿,但却会因为占用了一部分线程(或者说处理器的计算能力)而导致应用程序变慢,降低总吞吐量。CMS默认启动的回收线程数是(处理器核心数量+3)/4,也就是说,如果处理器核心数在四个或以上,并发回收时垃圾收集线程只占用不超过25%的处理器运算资源,并且会随着处理器核心数量的增加而下降。但是当处理器核心数量不足四个时,CMS对用户程序的影响就可能变得很大。如果应用本来的处理器负载就很高,还要分出一半的运算能力去执行收集器线程,就可能导致用户程序的执行速度忽然大幅降低。为了缓解这种情况,虚拟机提供了一种称为“增量式并发收集器”(Incremental Concurrent Mark Sweep/i-CMS)的CMS收集器变种,所做的事情和以前单核处理器年代PC机操作系统靠抢占式多任务来模拟多核并行多任务的思想一样,是在并发标记、清理的时候让收集器线程、用户线程交替运行,尽量减少垃圾收集线程的独占资源的时间,这样整个垃圾收集的过程会更长,但对用户程序的影响就会显得较少一些,直观感受是速度变慢的时间更多了,但速度下降幅度就没有那么明显。实践证明增量式的CMS收集器效果很一般,从JDK 7开始,i-CMS模式已经被声明为“deprecated”,即已过时不再提倡用户使用,到JDK 9发布后i-CMS模式被完全废弃。

        然后,由于CMS收集器无法处理“浮动垃圾”(Floating Garbage),有可能出现“Con-current Mode Failure”失败进而导致另一次完全“Stop The World”的Full GC的产生。在CMS的并发标记和并发清理阶段,用户线程是还在继续运行的,程序在运行自然就还会伴随有新的垃圾对象不断产生,但这一部分垃圾对象是出现在标记过程结束以后,CMS无法在当次收集中处理掉它们,只好留待下一次垃圾收集时再清理掉。这一部分垃圾就称为“浮动垃圾”。同样也是由于在垃圾收集阶段用户线程还需要持续运行,那就还需要预留足够内存空间提供给用户线程使用,因此CMS收集器不能像其他收集器那样等待到老年代几乎完全被填满了再进行收集,必须预留一部分空间供并发收集时的程序运作使用。在JDK5的默认设置下,CMS收集器当老年代使用了68%的空间后就会被激活,这是一个偏保守的设置,如果在实际应用中老年代增长并不是太快,可以适当调高参数-XX:CMSInitiatingOccu-pancyFraction的值来提高CMS的触发百分比,降低内存回收频率,获取更好的性能。到了JDK 6时,CMS收集器的启动阈值就已经默认提升至92%。但这又会更容易面临另一种风险:要是CMS运行期间预留的内存无法满足程序分配新对象的需要,就会出现一次“并发失败”(Concurrent Mode Failure),这时候虚拟机将不得不启动后备预案:冻结用户线程的执行,临时启用Serial Old收集器来重新进行老年代的垃圾收集,但这样停顿时间就很长了。所以参数-XX:CMSInitiatingOccupancyFraction设置得太高将会很容易导致大量的并发失败产生,性能反而降低,用户应在生产环境中根据实际应用情况来权衡设置。

        还有最后一个缺点,在本节的开头曾提到,CMS是一款基于“标记-清除”算法实现的收集器,如果读者对前面这部分介绍还有印象的话,就可能想到这意味着收集结束时会有大量空间碎片产生。空间碎片过多时,将会给大对象分配带来很大麻烦,往往会出现老年代还有很多剩余空间,但就是无法找到足够大的连续空间来分配当前对象,而不得不提前触发一次Full GC的情况。为了解决这个问题,CMS收集器提供了一个-XX:+UseCMS-CompactAtFullCollection开关参数(默认是开启的,此参数从JDK 9开始废弃),用于在CMS收集器不得不进行Full GC时开启内存碎片的合并整理过程,由于这个内存整理必须移动存活对象,(在Shenandoah和ZGC出现前)是无法并发的。这样空间碎片问题是解决了,但停顿时间又会变长,因此虚拟机设计者们还提供了另外一个参数-XX:CMSFullGCsBefore-Compaction(此参数从JDK 9开始废弃),这个参数的作用是要求CMS收集器在执行过若干次(数量由参数值决定)不整理空间的Full GC之后,下一次进入Full GC前会先进行碎片整理(默认值为0,表示每次进入Full GC时都进行碎片整理)。

4.7、Garbage First收集器

        Garbage First(简称G1)收集器是垃圾收集器技术发展历史上的里程碑式的成果,它开创了收集器面向局部收集的设计思路和基于Region的内存布局形式。早在JDK 7刚刚确立项目目标、Oracle公司制定的JDK 7 RoadMap里面,G1收集器就被视作JDK 7中HotSpot虚拟机的一项重要进化特征。从JDK6 Update 14开始就有Early Access版本的G1收集器供开发人员实验和试用,但由此开始G1收集器的“实验状态”(Experimental)持续了数年时间,直至JDK 7 Update 4,Oracle才认为它达到足够成熟的商用程度,移除了“Experimental”的标识;到了JDK 8 Update 40的时候,G1提供并发的类卸载的支持,补全了其计划功能的最后一块拼图。这个版本以后的G1收集器才被Oracle官方称为“全功能的垃圾收集器”(Fully-Featured Garbage Collector)。

        G1是一款主要面向服务端应用的垃圾收集器。HotSpot开发团队最初赋予它的期望是(在比较长期的)未来可以替换掉JDK 5中发布的CMS收集器。现在这个期望目标已经实现过半了,JDK 9发布之日,G1宣告取代Parallel Scavenge加Parallel Old组合,成为服务端模式下的默认垃圾收集器,而CMS则沦落至被声明为不推荐使用(Deprecate)的收集器。如果对JDK 9及以上版本的HotSpot虚拟机使用参数-XX:+UseConcMarkSweepGC来开启CMS收集器的话,用户会收到一个警告信息,提示CMS未来将会被废弃:

Java HotSpot(TM) 64-Bit Server VM warning: Option UseConcMarkSweepGC was deprecated in version 9.0 and ......

        但作为一款曾被广泛运用过的收集器,经过多个版本的开发迭代后,CMS(以及之前几款收集器)的代码与HotSpot的内存管理、执行、编译、监控等子系统都有千丝万缕的联系,这是历史原因导致的,并不符合职责分离的设计原则。为此,规划JDK 10功能目标时,HotSpot虚拟机提出了“统一垃圾收集器接口”,将内存回收的“行为”与“实现”进行分离,CMS以及其他收集器都重构成基于这套接口的一种实现。以此为基础,日后要移除或者加入某一款收集器,都会变得容易许多,风险也可以控制,这算是在为CMS退出历史舞台铺下最后的道路了。

        作为CMS收集器的替代者和继承人,设计者们希望做出一款能够建立起“停顿时间模型”(Pause Prediction Model)的收集器,停顿时间模型的意思是能够支持指定在一个长度为M毫秒的时间片段内,消耗在垃圾收集上的时间大概率不超过N毫秒这样的目标,这几乎已经是实时Java(RTSJ)的中软实时垃圾收集器特征了。

        那具体要怎么做才能实现这个目标呢?首先要有一个思想上的改变,在G1收集器出现之前的所有其他收集器,包括CMS在内,垃圾收集的目标范围要么是整个新生代(Minor GC),要么就是整个老年代(Major GC),再要么就是整个Java堆(Full GC)。而G1跳出了这个樊笼,它可以面向堆内存任何部分来组成回收集(Collection Set,一般简称CSet)进行回收,衡量标准不再是它属于哪个分代,而是哪块内存中存放的垃圾数量最多,回收收益最大,这就是G1收集器的Mixed GC模式。

        G1开创的基于Region的堆内存布局是它能够实现这个目标的关键。虽然G1也仍是遵循分代收集理论设计的,但其堆内存的布局与其他收集器有非常明显的差异:G1不再坚持固定大小以及固定数量的分代区域划分,而是把连续的Java堆划分为多个大小相等的独立区域(Region),每一个Region都可以根据需要,扮演新生代的Eden空间、Survivor空间,或者老年代空间。收集器能够对扮演不同角色的Region采用不同的策略去处理,这样无论是新创建的对象还是已经存活了一段时间、熬过多次收集的旧对象都能获取很好的收集效果。

        Region中还有一类特殊的Humongous区域,专门用来存储大对象。G1认为只要大小超过了一个Region容量一半的对象即可判定为大对象。每个Region的大小可以通过参数-XX:G1HeapRegionSize设定,取值范围为1MB~32MB,且应为2的N次幂。而对于那些超过了整个Region容量的超级大对象,将会被存放在N个连续的Humongous Region之中,G1的大多数行为都把Humongous Region作为老年代的一部分来进行看待,如图3-12所示。

        虽然G1仍然保留新生代和老年代的概念,但新生代和老年代不再是固定的了,它们都是一系列区域(不需要连续)的动态集合。G1收集器之所以能建立可预测的停顿时间模型,是因为它将Region作为单次回收的最小单元,即每次收集到的内存空间都是Region大小的整数倍,这样可以有计划地避免在整个Java堆中进行全区域的垃圾收集。更具体的处理思路是让G1收集器去跟踪各个Region里面的垃圾堆积的“价值”大小,价值即回收所获得的空间大小以及回收所需时间的经验值,然后在后台维护一个优先级列表,每次根据用户设定允许的收集停顿时间(使用参数-XX:MaxGCPauseMillis指定,默认值是200毫秒),优先处理回收价值收益最大的那些Region,这也就是“Garbage First”名字的由来。这种使用Region划分内存空间,以及具有优先级的区域回收方式,保证了G1收集器在有限的时间内获取尽可能高的收集效率。

        G1将堆内存“化整为零”的“解题思路”,看起来似乎没有太多令人惊讶之处,也完全不难理解,但其中的实现细节可是远远没有想象中那么简单,否则就不会从2004年Sun实验室发表第一篇关于G1的论文后一直拖到2012年4月JDK 7 Update 4发布,用将近10年时间才倒腾出能够商用的G1收集器来。G1收集器至少有(不限于)以下这些关键的细节问题需要妥善解决:

        譬如,将Java堆分成多个独立Region后,Region里面存在的跨Region引用对象如何解决?解决的思路我们已经知道:使用记忆集避免全堆作为GC Roots扫描,但在G1收集器上记忆集的应用其实要复杂很多,它的每个Region都维护有自己的记忆集,这些记忆集会记录下别的Region指向自己的指针,并标记这些指针分别在哪些卡页的范围之内。G1的记忆集在存储结构的本质上是一种哈希表,Key是别的Region的起始地址,Value是一个集合,里面存储的元素是卡表的索引号。这种“双向”的卡表结构(卡表是“我指向谁”,这种结构还记录了“谁指向我”)比原来的卡表实现起来更复杂,同时由于Region数量比传统收集器的分代数量明显要多得多,因此G1收集器要比其他的传统垃圾收集器有着更高的内存占用负担。根据经验,G1至少要耗费大约相当于Java堆容量10%至20%的额外内存来维持收集器工作。

        譬如,在并发标记阶段如何保证收集线程与用户线程互不干扰地运行?这里首先要解决的是用户线程改变对象引用关系时,必须保证其不能打破原本的对象图结构,导致标记结果出现错误,该问题的解决办法:CMS收集器采用增量更新算法实现,而G1收集器则是通过原始快照(SATB)算法来实现的。此外,垃圾收集对用户线程的影响还体现在回收过程中新创建对象的内存分配上,程序要继续运行就肯定会持续有新对象被创建,G1为每一个Region设计了两个名为TAMS(Top at Mark Start)的指针,把Region中的一部分空间划分出来用于并发回收过程中的新对象分配,并发回收时新分配的对象地址都必须要在这两个指针位置以上。G1收集器默认在这个地址以上的对象是被隐式标记过的,即默认它们是存活的,不纳入回收范围。与CMS中的“Concurrent Mode Failure”失败会导致Full GC类似,如果内存回收的速度赶不上内存分配的速度,G1收集器也要被迫冻结用户线程执行,导致Full GC而产生长时间“Stop The World”。

        譬如,怎样建立起可靠的停顿预测模型?用户通过-XX:MaxGCPauseMillis参数指定的停顿时间只意味着垃圾收集发生之前的期望值,但G1收集器要怎么做才能满足用户的期望呢?G1收集器的停顿预测模型是以衰减均值(Decaying Average)为理论基础来实现的,在垃圾收集过程中,G1收集器会记录每个Region的回收耗时、每个Region记忆集里的脏卡数量等各个可测量的步骤花费的成本,并分析得出平均值、标准偏差、置信度等统计信息。这里强调的“衰减平均值”是指它会比普通的平均值更容易受到新数据的影响,平均值代表整体平均状态,但衰减平均值更准确地代表“最近的”平均状态。换句话说,Region的统计状态越新越能决定其回收的价值。然后通过这些信息预测现在开始回收的话,由哪些Region组成回收集才可以在不超过期望停顿时间的约束下获得最高的收益。

        如果我们不去计算用户线程运行过程中的动作(如使用写屏障维护记忆集的操作),G1收集器的运作过程大致可划分为以下四个步骤:

  •         初始标记(Initial Marking):仅仅只是标记一下GC Roots能直接关联到的对象,并且修改TAMS指针的值,让下一阶段用户线程并发运行时,能正确地在可用的Region中分配新对象。这个阶段需要停顿线程,但耗时很短,而且是借用进行Minor GC的时候同步完成的,所以G1收集器在这个阶段实际并没有额外的停顿。
  •         并发标记(Concurrent Marking):从GC Root开始对堆中对象进行可达性分析,递归扫描整个堆里的对象图,找出要回收的对象,这阶段耗时较长,但可与用户程序并发执行。当对象图扫描完成以后,还要重新处理SATB记录下的在并发时有引用变动的对象。
  •         最终标记(Final Marking):对用户线程做另一个短暂的暂停,用于处理并发阶段结束后仍遗留下来的最后那少量的SATB记录。
  •         筛选回收(Live Data Counting and Evacuation):负责更新Region的统计数据,对各个Region的回收价值和成本进行排序,根据用户所期望的停顿时间来制定回收计划,可以自由选择任意多个Region构成回收集,然后把决定回收的那一部分Region的存活对象复制到空的Region中,再清理掉整个旧Region的全部空间。这里的操作涉及存活对象的移动,是必须暂停用户线程,由多条收集器线程并行完成的。

        从上述阶段的描述可以看出,G1收集器除了并发标记外,其余阶段也是要完全暂停用户线程的,换言之,它并非纯粹地追求低延迟,官方给它设定的目标是在延迟可控的情况下获得尽可能高的吞吐量,所以才能担当起“全功能收集器”的重任与期望。

        从Oracle官方透露出来的信息可获知,回收阶段(Evacuation)其实本也有想过设计成与用户程序一起并发执行,但这件事情做起来比较复杂,考虑到G1只是回收一部分Region,停顿时间是用户可控制的,所以并不迫切去实现,而选择把这个特性放到了G1之后出现的低延迟垃圾收集器(即ZGC)中。另外,还考虑到G1不是仅仅面向低延迟,停顿用户线程能够最大幅度提高垃圾收集效率,为了保证吞吐量所以才选择了完全暂停用户线程的实现方案。通过图3-13可以比较清楚地看到G1收集器的运作步骤中并发和需要停顿的阶段。

        毫无疑问,可以由用户指定期望的停顿时间是G1收集器很强大的一个功能,设置不同的期望停顿时间,可使得G1在不同应用场景中取得关注吞吐量和关注延迟之间的最佳平衡。不过,这里设置的“期望值”必须是符合实际的,不能异想天开,毕竟G1是要冻结用户线程来复制对象的,这个停顿时间再怎么低也得有个限度。它默认的停顿目标为两百毫秒,一般来说,回收阶段占到几十到一百甚至接近两百毫秒都很正常,但如果我们把停顿时间调得非常低,譬如设置为二十毫秒,很可能出现的结果就是由于停顿目标时间太短,导致每次选出来的回收集只占堆内存很小的一部分,收集器收集的速度逐渐跟不上分配器分配的速度,导致垃圾慢慢堆积。很可能一开始收集器还能从空闲的堆内存中获得一些喘息的时间,但应用运行时间一长就不行了,最终占满堆引发Full GC反而降低性能,所以通常把期望停顿时间设置为一两百毫秒或者两三百毫秒会是比较合理的

        从G1开始,最先进的垃圾收集器的设计导向都不约而同地变为追求能够应付应用的内存分配速率(Allocation Rate),而不追求一次把整个Java堆全部清理干净。这样,应用在分配,同时收集器在收集,只要收集的速度能跟得上对象分配的速度,那一切就能运作得很完美。这种新的收集器设计思路从工程实现上看是从G1开始兴起的,所以说G1是收集器技术发展的一个里程碑。

        G1收集器常会被拿来与CMS收集器互相比较,毕竟它们都非常关注停顿时间的控制,官方资料中将它们两个并称为“The Mostly Concurrent Collectors”。在未来,G1收集器最终还是要取代CMS的,而当下它们两者并存的时间里,分个高低优劣就无可避免。

        相比CMS,G1的优点有很多,暂且不论可以指定最大停顿时间、分Region的内存布局、按收益动态确定回收集这些创新性设计带来的红利,单从最传统的算法理论上看,G1也更有发展潜力。与CMS的“标记-清除”算法不同,G1从整体来看是基于“标记-整理”算法实现的收集器,但从局部(两个Region之间)上看又是基于“标记-复制”算法实现,无论如何,这两种算法都意味着G1运作期间不会产生内存空间碎片,垃圾收集完成之后能提供规整的可用内存。这种特性有利于程序长时间运行,在程序为大对象分配内存时不容易因无法找到连续内存空间而提前触发下一次收集。

        不过,G1相对于CMS仍然不是占全方位、压倒性优势的,从它出现几年仍不能在所有应用场景中代替CMS就可以得知这个结论。比起CMS,G1的弱项也可以列举出不少,如在用户程序运行过程中,G1无论是为了垃圾收集产生的内存占用(Footprint)还是程序运行时的额外执行负载
(Overload)都要比CMS要高。

        就内存占用来说,虽然G1和CMS都使用卡表来处理跨代指针,但G1的卡表实现更为复杂,而且堆中每个Region,无论扮演的是新生代还是老年代角色,都必须有一份卡表,这导致G1的记忆集(和其他内存消耗)可能会占整个堆容量的20%乃至更多的内存空间;相比起来CMS的卡表就相当简单,只有唯一一份,而且只需要处理老年代到新生代的引用,反过来则不需要,由于新生代的对象具有朝生夕灭的不稳定性,引用变化频繁,能省下这个区域的维护开销是很划算的。

        在执行负载的角度上,同样由于两个收集器各自的细节实现特点导致了用户程序运行时的负载会有不同,譬如它们都使用到写屏障,CMS用写后屏障来更新维护卡表;而G1除了使用写后屏障来进行同样的(由于G1的卡表结构复杂,其实是更烦琐的)卡表维护操作外,为了实现原始快照搜索(SATB)算法,还需要使用写前屏障来跟踪并发时的指针变化情况。相比起增量更新算法,原始快照搜索能够减少并发标记和重新标记阶段的消耗,避免CMS那样在最终标记阶段停顿时间过长的缺点,但是在用户程序运行过程中确实会产生由跟踪引用变化带来的额外负担。由于G1对写屏障的复杂操作要比CMS消耗更多的运算资源,所以CMS的写屏障实现是直接的同步操作,而G1就不得不将其实现为类似于消息队列的结构,把写前屏障和写后屏障中要做的事情都放到队列里,然后再异步处理。

        以上的优缺点对比仅仅是针对G1和CMS两款垃圾收集器单独某方面的实现细节的定性分析,通常我们说哪款收集器要更好、要好上多少,往往是针对具体场景才能做的定量比较。按照笔者的实践经验,目前在小内存应用上CMS的表现大概率仍然要会优于G1,而在大内存应用上G1则大多能发挥其优势,这个优劣势的Java堆容量平衡点通常在6GB至8GB之间,当然,以上这些也仅是经验之谈,不同应用需要量体裁衣地实际测试才能得出最合适的结论,随着HotSpot的开发者对G1的不断优化,也会让对比结果继续向G1倾斜。

五、低延迟垃圾收集器

        HotSpot的垃圾收集器从Serial发展到CMS再到G1,经历了逾二十年时间,经过了数百上千万台服务器上的应用实践,已经被淬炼得相当成熟了,不过它们距离“完美”还是很遥远。怎样的收集器才算是“完美”呢?这听起来像是一道主观题,其实不然,完美难以实现,但是我们确实可以把它客观描述出来。

        衡量垃圾收集器的三项最重要的指标是:内存占用(Footprint)、吞吐量(Throughput)和延迟(Latency),三者共同构成了一个“不可能三角”。三者总体的表现会随技术进步而越来越好,但是要在这三个方面同时具有卓越表现的“完美”收集器是极其困难甚至是不可能的,一款优秀的收集器通常最多可以同时达成其中的两项。

        在内存占用、吞吐量和延迟这三项指标里,延迟的重要性日益凸显,越发备受关注。其原因是随着计算机硬件的发展、性能的提升,我们越来越能容忍收集器多占用一点点内存;硬件性能增长,对软件系统的处理能力是有直接助益的,硬件的规格和性能越高,也有助于降低收集器运行时对应用程序的影响,换句话说,吞吐量会更高。但对延迟则不是这样,硬件规格提升,准确地说是内存的扩大,对延迟反而会带来负面的效果,这点也是很符合直观思维的:虚拟机要回收完整的1TB的堆内存,毫无疑问要比回收1GB的堆内存耗费更多时间。由此,我们就不难理解为何延迟会成为垃圾收集器最被重视的性能指标了。现在我们来观察一下现在已接触过的垃圾收集器的停顿状况,如图3-14所示。

        图3-14中浅色阶段表示必须挂起用户线程,深色表示收集器线程与用户线程是并发工作的。由图3-14可见,在CMS和G1之前的全部收集器,其工作的所有步骤都会产生“Stop The World”式的停顿;CMS和G1分别使用增量更新和原始快照(见3.4.6节)技术,实现了标记阶段的并发,不会因管理的堆内存变大,要标记的对象变多而导致停顿时间随之增长。但是对于标记阶段之后的处理,仍未得到妥善解决。CMS使用标记-清除算法,虽然避免了整理阶段收集器带来的停顿,但是清除算法不论如何优化改进,在设计原理上避免不了空间碎片的产生,随着空间碎片不断淤积最终依然逃不过“Stop TheWorld”的命运。G1虽然可以按更小的粒度进行回收,从而抑制整理阶段出现时间过长的停顿,但毕竟也还是要暂停的。

        读者肯定也从图3-14中注意到了,最后的两款收集器,Shenandoah和ZGC,几乎整个工作过程全部都是并发的,只有初始标记、最终标记这些阶段有短暂的停顿,这部分停顿的时间基本上是固定的,与堆的容量、堆中对象的数量没有正比例关系。实际上,它们都可以在任意可管理的(譬如现在ZGC只能管理4TB以内的堆)堆容量下,实现垃圾收集的停顿都不超过十毫秒这种以前听起来是天方夜谭、匪夷所思的目标。这两款目前仍处于实验状态的收集器,被官方命名为“低延迟垃圾收集器”(Low-Latency Garbage Collector或者Low-Pause-Time Garbage Collector)。

六、选择合适的垃圾收集器

6.1、Epsilon收集器

        在G1、Shenandoah或者ZGC这些越来越复杂、越来越先进的垃圾收集器相继出现的同时,也有一个“反其道而行”的新垃圾收集器出现在JDK 11的特征清单中——Epsilon,这是一款以不能够进行垃圾收集为“卖点”的垃圾收集器,这种话听起来第一感觉就十分违反逻辑,这种“不干活”的收集器要它何用?

        Epsilon收集器由RedHat公司在JEP 318中提出,在此提案里Epsilon被形容成一个无操作的收集器(A No-Op Garbage Collector),而事实上只要Java虚拟机能够工作,垃圾收集器便不可能是真正“无操作”的。原因是“垃圾收集器”这个名字并不能形容它全部的职责,更贴切的名字应该是本书为这一部分所取的标题——“自动内存管理子系统”。一个垃圾收集器除了垃圾收集这个本职工作之外,它还要负责堆的管理与布局、对象的分配、与解释器的协作、与编译器的协作、与监控子系统协作等职责,其中至少堆的管理和对象的分配这部分功能是Java虚拟机能够正常运作的必要支持,是一个最小化功能的垃圾收集器也必须实现的内容。从JDK 10开始,为了隔离垃圾收集器与Java虚拟机解释、编译、监控等子系统的关系,RedHat提出了垃圾收集器的统一接口,即JEP 304提案,Epsilon是这个接口的有效性验证和参考实现,同时也用于需要剥离垃圾收集器影响的性能测试和压力测试。

        在实际生产环境中,不能进行垃圾收集的Epsilon也仍有用武之地。很长一段时间以来,Java技术体系的发展重心都在面向长时间、大规模的企业级应用和服务端应用,尽管也有移动平台(指Java ME而不是Android)和桌面平台的支持,但使用热度上与前者相比要逊色不少。可是近年来大型系统从传统单体应用向微服务化、无服务化方向发展的趋势已越发明显,Java在这方面比起Golang等后起之秀来确实有一些先天不足,使用率正渐渐下降。传统Java有着内存占用较大,在容器中启动时间长,即时编译需要缓慢优化等特点,这对大型应用来说并不是什么太大的问题,但对短时间、小规模的服务形式就有诸多不适。为了应对新的技术潮流,最近几个版本的JDK逐渐加入了提前编译、面向应用的类数据共享等支持。Epsilon也是有着类似的目标,如果读者的应用只要运行数分钟甚至数秒,只要Java虚拟机能正确分配内存,在堆耗尽之前就会退出,那显然运行负载极小、没有任何回收行为的Epsilon便是很恰当的选择。

6.2、收集器的权衡

        如果算上Epsilon,已经介绍十款HotSpot虚拟机的垃圾收集器了,此外还涉及Azul System公司的PGC、C4等收集器,再加上本章中并没有出现,但其实也颇为常用的OpenJ9中的垃圾收集器,把这些收集器罗列出来就仿佛是一幅琳琅画卷、一部垃圾收集的技术演进史。现在可能有读者要犯选择困难症了,我们应该如何选择一款适合自己应用的收集器呢?这个问题的答案主要受以下三个因素影响:

  •         应用程序的主要关注点是什么?如果是数据分析、科学计算类的任务,目标是能尽快算出结果,那吞吐量就是主要关注点;如果是SLA应用,那停顿时间直接影响服务质量,严重的甚至会导致事务超时,这样延迟就是主要关注点;而如果是客户端应用或者嵌入式应用,那垃圾收集的内存占用则是不可忽视的。
  •         运行应用的基础设施如何?譬如硬件规格,要涉及的系统架构是x86-32/64、SPARC还是ARM/Aarch64;处理器的数量多少,分配内存的大小;选择的操作系统是Linux、Solaris还是Windows等。
  •         使用JDK的发行商是什么?版本号是多少?是ZingJDK/Zulu、OracleJDK、Open-JDK、OpenJ9抑或是其他公司的发行版?该JDK对应了《Java虚拟机规范》的哪个版本?

        一般来说,收集器的选择就从以上这几点出发来考虑。举个例子,假设某个直接面向用户提供服务的B/S系统准备选择垃圾收集器,一般来说延迟时间是这类应用的主要关注点,那么:

  •         如果你有充足的预算但没有太多调优经验,那么一套带商业技术支持的专有硬件或者软件解决方案是不错的选择,Azul公司以前主推的Vega系统和现在主推的Zing VM是这方面的代表,这样你就可以使用传说中的C4收集器了。
  •         如果你虽然没有足够预算去使用商业解决方案,但能够掌控软硬件型号,使用较新的版本,同时又特别注重延迟,那ZGC很值得尝试。
  •         如果你对还处于实验状态的收集器的稳定性有所顾虑,或者应用必须运行在Win-dows操作系统下,那ZGC就无缘了,试试Shenandoah吧。
  •         如果你接手的是遗留系统,软硬件基础设施和JDK版本都比较落后,那就根据内存规模衡量一下,对于大概4GB到6GB以下的堆内存,CMS一般能处理得比较好,而对于更大的堆内存,可重点考察一下G1。

        当然,以上都是仅从理论出发的分析,实战中切不可纸上谈兵,根据系统实际情况去测试才是选择收集器的最终依据。

七、内存分配与回收策略

Java技术体系的自动内存管理,最根本的目标是自动化地解决两个问题:自动给对象分配内存以及自动回收分配给对象的内存。

7.1、对象优先在Eden分配

        大多数情况下,对象在新生代Eden区中分配。当Eden区没有足够空间进行分配时,虚拟机将发起一次Minor GC。

        HotSpot虚拟机提供了-XX:+PrintGCDetails这个收集器日志参数,告诉虚拟机在发生垃圾收集行为时打印内存回收日志,并且在进程退出的时候输出当前的内存各区域分配情况。

7.2、大对象直接进入老年代

        大对象就是指需要大量连续内存空间的Java对象,最典型的大对象便是那种很长的字符串,或者元素数量很庞大的数组,byte[]数组就是典型的大对象。大对象对虚拟机的内存分配来说就是一个不折不扣的坏消息,比遇到一个大对象更加坏的消息就是遇到一群“朝生夕灭”的“短命大对
象”,我们写程序的时候应注意避免。在Java虚拟机中要避免大对象的原因是,在分配空间时,它容易导致内存明明还有不少空间时就提前触发垃圾收集,以获取足够的连续空间才能安置好它们,而当复制对象时,大对象就意味着高额的内存复制开销。HotSpot虚拟机提供了-XX:PretenureSizeThreshold参数,指定大于该设置值的对象直接在老年代分配,这样做的目的就是避免在Eden区及两个Survivor区之间来回复制,产生大量的内存复制操作。

注意:-XX:PretenureSizeThreshold参数只对Serial和ParNew两款新生代收集器有效,HotSpot的其他新生代收集器,如Parallel Scavenge并不支持这个参数。如果必须使用此参数进行调优,可考虑ParNew加CMS的收集器组合。

7.3、长期存活的对象将进入老年代

        HotSpot虚拟机中多数收集器都采用了分代收集来管理堆内存,那内存回收时就必须能决策哪些存活对象应当放在新生代,哪些存活对象放在老年代中。为做到这点,虚拟机给每个对象定义了一个对象年龄(Age)计数器,存储在对象头中。对象通常在Eden区里诞生,如果经过第一次
Minor GC后仍然存活,并且能被Survivor容纳的话,该对象会被移动到Survivor空间中,并且将其对象年龄设为1岁。对象在Survivor区中每熬过一次Minor GC,年龄就增加1岁,当它的年龄增加到一定程度(默认为15),就会被晋升到老年代中。对象晋升老年代的年龄阈值,可以通过参数-XX:MaxTenuringThreshold设置。

7.4、动态对象年龄判定

        为了能更好地适应不同程序的内存状况,HotSpot虚拟机并不是永远要求对象的年龄必须达到-XX:MaxTenuringThreshold才能晋升老年代,如果在Survivor空间中相同年龄所有对象大小的总和大于Survivor空间的一半,年龄大于或等于该年龄的对象就可以直接进入老年代,无须等到-XX:MaxTenuringThreshold中要求的年龄。

7.5、空间分配担保

        在发生Minor GC之前,虚拟机必须先检查老年代最大可用的连续空间是否大于新生代所有对象总空间,如果这个条件成立,那这一次Minor GC可以确保是安全的。如果不成立,则虚拟机会先查看-XX:HandlePromotionFailure参数的设置值是否允许担保失败(Handle Promotion Failure);如果允许,那会继续检查老年代最大可用的连续空间是否大于历次晋升到老年代对象的平均大小,如果大于,将尝试进行一次Minor GC,尽管这次Minor GC是有风险的;如果小于,或者-XX:HandlePromotionFailure设置不允许冒险,那这时就要改为进行一次Full GC。

        解释一下“冒险”是冒了什么风险:前面提到过,新生代使用复制收集算法,但为了内存利用率,只使用其中一个Survivor空间来作为轮换备份,因此当出现大量对象在Minor GC后仍然存活的情况——最极端的情况就是内存回收后新生代中所有对象都存活,需要老年代进行分配担保,把Survivor无法容纳的对象直接送入老年代,这与生活中贷款担保类似。老年代要进行这样的担保,前提是老年代本身还有容纳这些对象的剩余空间,但一共有多少对象会在这次回收中活下来在实际完成内存回收之前是无法明确知道的,所以只能取之前每一次回收晋升到老年代对象容量的平均大小作为经验值,与老年代的剩余空间进行比较,决定是否进行Full GC来让老年代腾出更多空间。

        取历史平均值来比较其实仍然是一种赌概率的解决办法,也就是说假如某次Minor GC存活后的对象突增,远远高于历史平均值的话,依然会导致担保失败。如果出现了担保失败,那就只好老老实实地重新发起一次Full GC,这样停顿时间就很长了。虽然担保失败时绕的圈子是最大的,但通常情况下都还是会将-XX:HandlePromotionFailure开关打开,避免Full GC过于频繁。

八、结语

        垃圾收集器在许多场景中都是影响系统停顿时间和吞吐能力的重要因素之一,虚拟机之所以提供多种不同的收集器以及大量的调节参数,就是因为只有根据实际应用需求、实现方式选择最优的收集方式才能获取最好的性能。没有固定收集器、参数组合,没有最优的调优方法,虚拟机也就没有什么必然的内存回收行为。因此学习虚拟机内存知识,如果要到实践调优阶段,必须了解每个具体收集器的行为、优势劣势、调节参数。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/773405.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

echarts图例对齐

富文本不生效,是没有设置lineHeight

【运维】shell监控脚本结合钉钉机器人实现服务及服务器监控告警

文章目录 前言一、监控shell脚本和钉钉机器人二、创建钉钉机器人:1.在钉钉群聊里点击设置2.在设置里点击机器人选项3.再点击添加机器人4.再点击选择自定义机器人5.设置机器人名称、是否加密、是否限制ip、以及触发关键字6.获取机器人的Webhook地址 三、编写监控脚本…

MySQL表关联更新

背景: 有两张表,一张class信息表,一张student信息表,但student表里的信息存在错误,需要用class表中的信息去更新student表数据。 方法一: update student_info s set class_name (select class_name fr…

一本通12951917:装箱问题

不知道说什么废话好了 题目 装箱问题 描述 有一个箱子容量为V(正整数,0<=V<=20000),同时有n个物品(0<n<=30),每个物品…

Spring 的依赖注入

Spring 的依赖注入 文章目录 Spring 的依赖注入每博一文案1. 依赖注入1.1 构造注入1.1.1 通过参数名进行构造注入1.1.2 通过参数的下标,进行构造注入1.1.3 不指定参数下标,不指定参数名字,通过自动装配的方式 1.2 set 注入 2. set注入的各种方…

uniapp 小程序 picker 日期时间段选择(精确到年月日时分+周几)

效果图&#xff1a; picker时间选择器 精确到年月日时分周几 需要引入moment.js&#xff0c;有可能引入后在项目内会报错&#xff0c;可以考虑把选择日期作为一个组件引入 1、timepage.vue组件封装 <template><view><picker mode"multiSelector" :va…

人才输送|捷码帮我走出求职迷茫期!

大家好&#xff0c;我是边文军。 很荣幸应余老师之邀&#xff0c;在这里和各位兄弟姐妹分享应聘青岛英哲低代码工程师的求职经历&#xff0c;希望能给大家提供点帮助。 01 自我介绍 先来做一个自我介绍吧&#xff01;我是计算机专业出身&#xff0c;学的移动应用开发专业。学…

【贪心算法part01】| 455.分发饼干、376.摆动序列、53.最大子序和

目录 &#x1f388;LeetCode455.分发饼干 &#x1f388;LeetCode376.摆动序列 &#x1f388;LeetCode53.最大子序和 &#x1f388;LeetCode455.分发饼干 链接&#xff1a;455.分发饼干 假设你是一位很棒的家长&#xff0c;想要给你的孩子们一些小饼干。但是&#xff0c;…

决赛结束,颁奖在即:2023隐私计算大会暨“星河杯”隐私计算大赛颁奖典礼震撼来袭!

7月11日-12日&#xff0c;首届“星河杯”隐私计算大赛4个赛题共计37支团队陆续完成决赛评审&#xff0c;决出的大赛获奖团队代表将受邀出席7月26日在青岛星河湾酒店举办的2023隐私计算大会暨首届“星河杯”隐私计算颁奖典礼。 2023隐私计算大会暨首届“星河杯”隐私计算大赛颁奖…

上海市静安区财政局领导带队调研合合信息,政企共话科技创新

近日&#xff0c;上海市静安区财政局副局长应文婷一行赴市北高新园区&#xff0c;实地走访科技企业上海合合信息科技股份有限公司&#xff08;简称“合合信息”&#xff09;&#xff0c;了解公司技术创新成果及产业布局&#xff0c;倾听企业在发展过程中的政策需求。合合信息董…

【FPGA】Vivado 保姆级安装教程 | 从官网下载安装包开始到安装完毕 | 每步都有详细截图说明 | 支持无脑跟装

目录 &#xff08;如果你有安装包&#xff0c;可跳转至 Step5&#xff09; Vivado 介绍 Step1&#xff1a;进入官网 Step2&#xff1a;注册账号 Step3&#xff1a;进入下载页面 Step4&#xff1a;下载安装包 Step5&#xff1a;安装 Step6&#xff1a;等待软件安装完成 …

Linux--在vim中查看man手册中某个函数的库函数 !man 函数名

比如我用到fork函数&#xff0c;但是我不知道它的库函数&#xff0c;在不想退出vim的情况下&#xff0c;我们可以在命令模式下输入以下指令&#xff1a; !man fork 示例&#xff1a; 注&#xff1a;默认打开的是man手册最底部&#xff0c;需要往上翻才能找到库函数

中国农机自动化:靠补贴喂养还是真市场需求?

近年来&#xff0c;随着科技的快速发展和农业现代化进程的加快&#xff0c;中国农机自动化技术得到了广泛应用和推广。但高速的发展之下&#xff0c;不禁有人疑问&#xff1a;中国农机自动化&#xff1a;靠补贴喂养还是真市场需求&#xff1f; 政策补贴大力支持农机自动化引担忧…

Vue中值的传递(父传子,子传父,子父同步)

1.父组件->子组件传递数据 ①父组件通过 v-bind: 属性绑定的形式&#xff0c;把数据传递给子组件 ②子组件中&#xff0c;通过props接收父组件传递过来的数据 2.子组件->父组件传递数据 1.在子组件中&#xff1a; 在emits定义自定义事件通过触发事件来触发自定义函数&am…

天翎低代码平台构建的奥林巴斯管理系统

企业痛点&#xff1a; 奥林巴斯&#xff08;中国&#xff09;有限公司是一家主营工业、医疗和消费者市场的国际公司。随着集团业务的高速的发展&#xff0c;公司也不断的优化产品和服务&#xff0c;以创新之心与时俱进&#xff0c;公司管理层也深刻意识到&#xff0c;想让集团能…

wpf prism使用

目录 1.Nuget中安装prism框架&#xff1a; 2.改造程序启动入口 3.View和ViewModel自动关联 4.绑定 5.Command 6.Event Aggregator&#xff08;事件聚合器&#xff09;、消息通知 7.弹窗、对话服务 DialogService 8.Region区域 9.Navigation导航 10.module 模块 1.Nug…

java读取邮件标题时,突然报错Failed to load IMAP envelope

生产环境之前可以正常使用imap协议收取邮件&#xff0c;突然有一天报错Failed to load IMAP envelope&#xff0c;可以确定邮件服务器、账号密码、配置都是正确的&#xff0c;使用foxmail可以正常连接并成功收取邮件&#xff0c;因此可以推测java代码可能有兼容性问题&#xff…

翻遍200个网站,整理了这套CSDN最系统的网络安全学习路线

01 什么是网络安全 网络安全可以基于攻击和防御视角来分类&#xff0c;我们经常听到的 “红队”、“渗透测试” 等就是研究攻击技术&#xff0c;而“蓝队”、“安全运营”、“安全运维”则研究防御技术。 无论网络、Web、移动、桌面、云等哪个领域&#xff0c;都有攻与防两面…

MySQL第七次

1、 string类型数据的命令操作&#xff1a; 2、 list类型数据的命令操作&#xff1a; 3、 hash类型数据的命令操作&#xff1a; 4、Keys相关的命令操作 二、举例说明list和hash的应用场景 hash&#xff1a;电商购物车 以用户id为key&#xff0c;商品id为field&#xff0c;商品数…

知识图谱推理的学习逻辑规则(上)7.19+(下)7.20

知识图谱推理的学习逻辑规则 摘要介绍相关工作模型 &#xff08;7.20&#xff09;知识图谱推理逻辑规则概率形式化参数化规则生成器具有逻辑规则的推理预测器 优化E步骤M步骤 实验实验设置实验结果 总结 原文&#xff1a; 摘要 本文研究了在知识图谱上进行推理的学习逻辑规则…